首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
激光熔覆是一种先进的表面改性技术,具有对基体材料热影响区作用小、组织细密和基体的变形程度小等特点,被广泛应用于再制造领域。稀土元素能够改善镍基合金涂层组织,使熔覆层晶粒细小,同时净化晶界。总结稀土氧化物在激光熔覆镍基合金涂层研究中的进展,概述稀土氧化物的种类和性质,结合稀土氧化物的作用机制研究其对镍基合金涂层的晶粒尺寸、稀释率、裂纹的影响,分析涂层硬度、耐磨性、耐蚀性、抗氧化性等性能,同时讨论其对涂层中硬质相的影响。最后对目前阶段稀土氧化物对激光熔覆镍基合金涂层研究中存在的问题和未来的发展方向进行了展望。  相似文献   

2.
为研究相对较低含量(质量分数≤15%)碳化钨镍基合金涂层中碳化钨对涂层性能的影响,采用激光熔覆技术在316L不锈钢基体上制备了不同碳化钨含量镍基碳化钨复合涂层,表征其组织形貌,同时对比分析不同碳化钨含量复合涂层的硬度、耐磨性。结果表明,涂层熔道顶部搭接处存在明显的分界线,分界线上侧为细小等轴晶,下侧为粗大的柱状晶;碳化钨颗粒周围微熔形成析出物,同时在熔池底部有聚集趋势,且随碳化钨含量增大聚集趋势增大;镍基复合涂层硬度和耐磨性随添加碳化钨含量增大而提升,15%质量分数碳化钨复合涂层相较于纯镍熔覆涂层硬度提高约12.88%,摩擦因数降低约19.62%,磨痕形貌显示低含量碳化钨复合涂层中硬质颗粒的耐磨支撑作用相对较弱,复合涂层整体硬度提升是耐磨性能增强的主要因素。  相似文献   

3.
激光重熔对喷射电沉积纳米镍涂层组织与性能的影响   总被引:8,自引:2,他引:6  
为了提高喷射电沉积纳米镍涂层的性能,采用激光重熔工艺对涂层进行处理,研究了激光重熔对涂层微观组织和性能的影响。用扫描电镜(SEM),X射线衍射仪(XRD)和显微硬度计分析了涂层表面形貌、微观结构和显微硬度,同时对涂层的腐蚀特性进行了考察。结果表明,在优化的工艺参数下,喷射电沉积制备的镍涂层表面比较平整,结合致密,由平均尺寸为13.7 nm的纳米晶颗粒组成,但涂层中仍存在一些孔隙及其他缺陷;经过激光重熔后,熔融区内的晶粒尺寸明显减小,使涂层致密化程度得以提高并使涂层与基体由机械结合变为冶金结合,因此激光重熔处理后涂层的显微硬度明显提高,且其耐腐蚀性能明显优于原喷射电沉积镍涂层。  相似文献   

4.
激光熔覆Ni基SiC合金涂层组织与性能的研究   总被引:5,自引:0,他引:5  
利用5kWCO2连续波激光器在16Mn钢基材表面对含20%(体积比)SiC陶瓷粉末的镍基自熔性合金粉末进行激光熔覆得到Ni基SiC合金涂层(NiSiC)。研究了合金涂层的组织形貌及相结构,并用单纯的镍基合金涂层(Ni60)进行了显微硬度及滑动磨损性能的对比试验。结果表明,NiSiC合金涂层由γ枝晶及其间的共晶组织组成,主要组成相为γ-Ni,γ-(Ni,Fe)固溶体和(Cr,Fe)7C3,Cr23C6及(Cr,Si)3Ni3Si等化合物。添加SiC的镍基合金涂层NiSiC比单纯的镍基合金涂层Ni60具有较高的硬度和耐磨性。  相似文献   

5.
激光原位碳化铬-镍基复合涂层的组织特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为了制备陶瓷增强镍基复合涂层,采用激光熔覆技术在45#钢表面原位合成了碳化铬-镍基复合涂层,研究了涂层的显微组织、相结构特征及显微硬度。碳化铬陶瓷的形状主要有四边形(菱形)、六边形和不规则块状;四边形碳化铬为Cr3C2,六边形碳化铬为Cr7C3,不规则块状碳化铬成分不确定,可能为Cr3C2或Cr7C3;涂层的平均显微硬度达到基体的3.5倍;涂层具有较高的硬度和致密的组织。结果表明,涂层主要由Cr-Ni-Fe-C,C,Cr7C3和Cr3C2四相组成,显微组织均匀致密,与基体呈良好的冶金结合。该研究对激光原位碳化铬-镍基复合涂层的理论研究和实际应用是有一定帮助的。  相似文献   

6.
结合电磁带隙结构和磁性材料的PCB电源接地层设计   总被引:1,自引:0,他引:1       下载免费PDF全文
在印制电路板的设计中,供电系阻抗谐振所引起的噪声和电磁干扰问题一直是设计人员关注的焦点。已有的研究显示,适当的电磁带隙(EBG)结构可以有效地降低供电系的电磁干扰。本文通过运用基于快速算法和分解元法的计算机仿真,研究供电系EBG结构中采用磁性材料后的阻抗特性。研究表明,在供电系内侧增加磁性材料涂层,能在原有基础上进一步抑制电磁干扰。  相似文献   

7.
为满足某装置用阀门密封面材料不能含有钴的要求,通过激光熔覆两种无钴镍基合金粉末,在0Cr18Ni10Ti不锈钢表面制备出具有梯度硬度分布的较厚涂层,分析了涂层的微观组织、硬度及界面结合强度。结果表明,采用硬度较低的镍基合金涂层作为过渡层,解决了具有较高硬度镍基合金涂层的开裂问题;涂层与基体及两种镍基合金涂层之间界面连续过渡,硬度呈梯度变化,涂层表面硬度达HRC47;涂层与基体界面为完全冶金结合,其界面结合强度大于565MPa;经弯曲及热震试验后,涂层未出现开裂及剥落现象,说明涂层具有良好的抗热震性能。  相似文献   

8.
赵艳  沈中华  陆健  倪晓武 《激光技术》2006,30(6):647-649,666
为了分析圆柱型涂层/基底系统中声表面波的特点及其传播特性,以热弹激发机理为基础建立了脉冲激光在圆柱型涂层/基底系统中激发超声表面波的有限元程序。在此基础上,计算了激光在铝(涂层)/镍(基底)和镍(涂层)/铝(基底)系统中激发的超声表面波波形,它们分别对应了硬涂层系统和软涂层系统。结果表明,圆柱型涂层/基底系统中的超声表面波是色散的,并且其色散特性由弯曲柱面引起的几何色散和涂层/基底系统引起的色散共同决定,这使得圆柱型涂层系统中色散特性远比板状涂层系统杂,不存在简单的正常和反常色散规律。  相似文献   

9.
为了研究激光重熔工艺对用喷射电沉积方法在45#钢基体表面制备的纳米结构镍涂层性能的影响,采用扫描电镜和X射线衍射仪对涂层表面形貌和晶粒尺寸进行了分析,并对涂层做了表面显微硬度测试和耐腐蚀性试验,对激光重熔工艺对涂层性能影响进行了理论分析和实验验证。结果表明,在优选的工艺参数下,喷射电沉积制备的镍涂层由平均尺寸为13.7nm的纳米晶颗粒组成;经过激光重熔后,熔融区内的晶粒尺寸明显减小,涂层与基体由机械结合变为冶金结合,涂层的表面显微硬度和耐腐蚀性能得到明显的提高。这一结果对于促进激光加工技术在纳米材料的应用具有一定的理论意义和实际价值。  相似文献   

10.
合金铸铁气门座圈激光熔覆镍基复合涂层的研究   总被引:1,自引:1,他引:0  
针对车用内燃机排气门座圈高温、高交变应力和高腐蚀性工况,采用添加了强碳化物形成元素的镍基自熔合金粉末,通过激光熔覆,在CrCuB合金灰铸铁基体上制备了原位合成的颗粒增强镍基复合涂层.涂层厚度约0.6mm,平均硬度655HV0.2,与基体成冶金结合.平均尺寸约1um的硬质颗粒在涂层中均匀分布,这种从液态合成析出的硬质颗粒与具有低硬度高塑性的高镍基体强韧结合,能有效提高涂层的使用性能.研究表明,铸铁表面镍基合金激光熔覆层产生气孔的强烈倾向与石墨相的存在和镍基合金的凝同特征密切相关,合理的工艺措施可以消除气孔缺陷.  相似文献   

11.
为了提高钛合金的表面耐磨性能,以镍包石墨粉末作为预涂材料,先热喷涂到Ti-6A l-4V基底表面,再采用激光技术进行重熔处理,获得了质量良好的增强涂层。通过XRD、SEM和EDS对涂层组织进行分析,结果表明:涂层的微观组织为固熔了少量Ti元素的镍基,含有大量的TiC增强相。这些TiC增强相呈现发达的枝晶状形态,是在激光重熔过程中原位反应生成的。显微维氏硬度测试表明:激光重熔涂层的硬度达到HV1200,是钛合金基底硬度的3倍。  相似文献   

12.
采用激光熔覆技术,在1Cr18Ni9Ti基材上,“原位”合成了以MoNiSi及Co_3MoSi Laves相为增强相的镍基和钴基复合材料涂层。利用OM,XRD、SEM、TEM等研究了涂层的显微组织和微结构,并考察了涂层的显微硬度、耐磨损性能和高温抗氧化性能。结果表明,镍基、钴基激光熔覆涂层显微组织分别为MoNiSi分布在镍基固溶体基体上和初生Co_3Mo_2Si分布在Co固溶体和Co_3Mo_2Si共晶基体上。两种合金的强化相均为具有密排六方晶体结构的MgZn_2型Laves相、且固溶大量合金元素Cr;固溶体相均为面心立方晶体结构,Cr、Si、Mo等合金元素固溶含量很高。镍基、钴基激光熔覆涂层的平均显微硬度分别为650HV_(0.2)和1000HV_(0.2)。与不锈钢和镍基高温合金相比,Laves相增强激光熔覆复合材料涂层具有优良的耐磨和抗高温氧化综合性能。  相似文献   

13.
由于开关电源具有小型、轻量、效率高、价格低等优点,在工业上有取代线性电源的趋势。然而,开关电源的这些优点在一定程度上被它们产生的电磁干扰所抵消。由于开关电源的广泛应用,人们关心的是如何限制这一电磁干扰。例如最近通过的美国联帮通讯委员会(FCC)规定就是企图限制开关电源产生的电磁干扰。这个章程在美国商业市场上虽然是一个相当新的规定,但在欧洲对最大允许的电磁干扰的限制已经有一些时候了。欧洲对电磁干扰要求最严格的机构是西德的德国电工学会(VDE)。还有一个有关干扰的规定是美国军用产品电磁干扰抑制标准(MIL)。 FCC和VDE所规定的电磁干扰范围有明显的区别,主要区别是由于两个机构的不同目的所产生的。理解这些规定和它们的目的对于分析开关电源的电磁干扰的特性是很重要的。  相似文献   

14.
为了对35CrMo电机主轴激光熔覆铁基合金与镍基合金涂层进行对比研究,利用 CO2激光在35CrMo电机主轴表面制备3540铁基和Ni00镍基合金改性涂层,在初步满足工程应用的前提下,对两种材料改性涂层横截面横向和纵向上的硬度进行测试,并通过配备腐蚀液对其进行了金相研究。结果表明,在熔覆区和熔合区交界处附近,两种熔覆材料的显微硬度差别不大,均为640HV左右,都能满足工程应用;两种涂层材料的耐腐蚀性均较基体材料强,激光熔覆区域、熔合区的显微组织差异明显,晶粒的尺寸逐渐变小,且镍基材料的耐腐蚀更强。综合比较而言,选择Ni00熔覆材料较3540材料更能满足工程应用。  相似文献   

15.
镍基超合金的Nd-YAG激光熔敷涂层行为研究   总被引:1,自引:0,他引:1  
对ЖС6y、К24、К17三种镍基超合金的几种材料的Nd—YAG激光熔敷涂层行为进行了试验研究,并与三种超合金激光重熔行为进行了对比。研究表明,三种镍基超合金的重熔性都很差,热裂纹敏感性高,重熔区出现很多凝固裂纹。几种粉末涂层行为不尽相同,但对超合金基材的裂纹敏感性都有程度不同的改善,大大减少甚至抑制了基村上裂纹的产生,并在其与基材的界面处形成一白亮的熔合区,达到冶金结合。采用某几种钴基合金和镍基合金粉末,可在某种超合金基材上获得高质量无裂纹涂层。  相似文献   

16.
吕旭东  王华明 《应用激光》2002,22(3):272-274
MoSi_2以其高熔点(2030℃)、高使用温度(>1600℃)、良好的导热性和导电性等优良性能,被认为是继镍基高温合金之后极具竞争力的新型高温结构候选材料之一。但是,MoSi_2的低温脆性和中温氧化碎裂(PEST)难以克服。本文以Mo、Si合金粉末为原料,采用激光熔覆技术,在纯镍基材上制成MoSi_2金属硅化物复合材料涂层。分析了涂层的显微组织,测试了涂层的显微硬度。  相似文献   

17.
杨富理  袁根福  李浩 《激光技术》2021,45(6):756-761
为了提高蓝宝石对普通红外激光的吸收效率, 采用金属氧化物涂层辅助1064nm红外光纤激光器刻蚀蓝宝石。通过单因素研究方法, 研究了不同金属氧化物涂层的刻槽阈值以及激光能量和金属氧化物涂层对刻蚀率的影响, 对6种金属氧化物涂层辅助激光刻蚀的差异以及刻蚀机理进行了理论分析和实验验证。结果表明, TiO2涂层的刻槽阈值最低约为8.5J/cm2、激光能量为77.7J/cm2时, TiO2涂层的刻蚀率最高约为107.3×104μm3/s; 刻蚀率随着激光能量的增大先增大后趋于平缓且有所降低; 刻槽阈值和刻蚀率主要与涂层吸收激光能力、热导率以及熔沸点有关, 其中受涂层吸收激光能力和熔沸点的影响较大。此研究结果对激光加工蓝宝石的工业应用提供一定的技术基础。  相似文献   

18.
为了研究线源脉冲激光激发的超声波在带涂层金属板表面裂纹检测方面的应用,采用有限元模拟的方法,分别建立了含有裂纹的带镍涂层和不带镍涂层金属板模型,并模拟出激光激发出的瑞利波以及瑞利波的传播过程。通过对接收点处的波形进行理论分析,得出了涂层厚度、裂纹深度与瑞利波时频域信号的关系。结果表明,瑞利波波速随着涂层厚度h的不同而不断变化;当表面存在裂纹时,不带涂层模型的反射瑞利波与剪切瑞利波的到达时间差Δt与裂纹深度hc成线性关系,带涂层模型的Δt与hc以涂层厚度为分界点成分段线性关系。此研究结果为实际测量带涂层金属板的表面裂纹深度提供了参考。  相似文献   

19.
原位生成NbC颗粒增强镍基激光熔覆层   总被引:9,自引:2,他引:9  
激光熔覆技术是金属材料表面强化和改性的有效方法之一。利用该技术,在A3钢表面激光熔覆预置涂层,成功制备出了原位生成NbC颗粒增强的镍基复合涂层,并进行了硬度、摩擦性能测试,X射线衍射(XRD)和显微组织分析。扫描电镜(SEM)、能谱分析(EDS)和X射线衍射分析结果表明,原位生成NbC颗粒增强的镍基复合涂层与基材呈现良好的冶金结合,熔覆层的组织为先共晶析出的树枝晶(Cr,Fe碳化物相)和原位生成的NbC颗粒相均匀分布在γ(Ni Fe)基体中。硬度测试和摩擦磨损实验表明,激光熔覆原位生成NbC颗粒增强镍基复合涂层平均硬度高达HV0.31200,耐磨性是纯Ni60激光熔覆层的2.5倍。分析认为,其硬度和耐磨性提高的原因在于涂层中形成了大量的、原位生长的NbC颗粒增强相,且均匀分布于基体中。  相似文献   

20.
为了研究高温合金激光熔覆涂层组织演变及力学性能,采用激光熔覆技术在2Cr25Ni20耐热奥氏体不锈钢表面制备镍基NiCrFeMo高温合金涂层.使用扫描电子显微镜、X射线衍射仪、能量色散光谱仪、显微硬度计等微观分析测试手段对该镍基高温合金涂层的微观组织形貌、物相种类、界面元素分布与偏析、各区域的硬度进行分析.结果表明,基...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号