首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to its excellent mechanical properties, diamond can be used for many applications in mechanical engineering. With the help of the Chemical Vapor Deposition (CVD) method it is possible to deposit polycrystalline diamond films on different substrate materials of nearly any shape and surface. So diamond cutting tools with complex geometry are now possible. In this investigation diamond coatings deposited by microwave plasma CVD (MW-PACVD) on Si3N4 inserts were used for turning experiments. By means of changes in the CH4/H2 gas ratio two different types of film morphology were generated, one rather highly faceted and the other one fine-grained ballas-type surface microstructure. The cutting performance of the CVD diamond coated triangular silicon nitride inserts was analyzed for continuous dry turning of the hypereutectic AISi 17Cu4Mg alloy with different cutting speeds. During the experiments no wear of the diamond films could be detected; nevertheless, the adhesion to the Si3N4 substrate has still to be improved. The results of the cutting tests gave valuable information for favorable geometry and clamping devices of cutting tools coated with CVD diamond and for suitable machining parameters.  相似文献   

2.
首先,以15vol%或25vol%的TiC0.5N0.5粉体为导电第二相,利用热压烧结法制备了TiC0.5N0.5/Si3N4复相陶瓷;然后,分别通过物理气相沉积(PVD)和化学气相沉积(CVD)技术在TiC0.5N0.5/Si3N4陶瓷刀具表面沉积了CrAlN和TiN/Al2O3/TiN涂层;最后,通过对TiC0.5N0.5/Si3N4刀具进行连续切削灰铸铁实验,研究了TiC0.5N0.5含量和涂层类型对刀具磨损特征的影响,并探讨了刀具的磨损机制。结果表明:TiC0.5N0.5含量的增加有利于提高TiC0.5N0.5/Si3N4复相陶瓷刀具基体的硬度和电导率,但对耐磨性和切削寿命的影响较小;采用PVD技术沉积CrAlN涂层时,随着TiC0.5N0.5含量的增加,涂层的厚度、结合强度和硬度都得到提高,涂层刀具的磨损性能显著提高,切削寿命也明显延长;而采用CVD技术沉积TiN/Al2O3/TiN涂层时,TiC0.5N0.5含量的变化对涂层的厚度、结合强度和硬度基本没有影响,TiN/Al2O3/TiN涂层刀具整体切削性能变化不大。CrAlN涂层和TiN/Al2O3/TiN涂层都可明显改善TiC0.5N0.5/Si3N4复相陶瓷刀具的耐磨性和切削寿命;相对于TiN/Al2O3/TiN涂层,CrAlN涂层具有更高的涂层硬度和粘着强度,但TiN/Al2O3/TiN涂层具有较大的涂层厚度,TiN/Al2O3/TiN涂层刀具表现出更加优异的耐磨性和切削寿命。TiC0.5N0.5/Si3N4复相陶瓷刀具的磨损机制以机械摩擦导致的磨粒磨损为主,伴随有少量的粘结磨损。  相似文献   

3.
为探究不同冷却润滑方式对切削SiCP/Al复合材料刀具磨损的影响,进行了干切削(Dry)、微量润滑(MQL)、液氮(LN2)、切削油(Oil)和乳化液(Emulsion)共五种冷却润滑条件下的车削实验,分析了冷却润滑方式对刀具边界磨损、刀具破损和后刀面磨损的影响。结果表明:MQL和LN2有更佳的流体冲刷效果,可以将脱落的SiC颗粒及时带离切削区,减少边界磨损; Oil和Emulsion冲刷效果较差,会加剧边界磨损。LN2的使用会增加刀具受到的热应力和机械冲击,积屑瘤发生完全脱落,造成切削过程不平稳,当切削距离达到1 100 m时,刀具发生破损; Oil切削时,严重的边界磨损导致刀尖部位尺寸减小,强度降低,当切削距离达到825 m时发生了刀具破损。MQL良好的润滑渗透性和LN2有效的冷却效果可以减少后刀面磨损。因此,MQL兼具冷却、润滑和流体冲刷效果,更加适合作为切削SiCP/Al复合材料的冷却润滑方式。   相似文献   

4.
A novel pressurised chamber was designed to construct a special purpose test rig to achieve saturated liquid state of refrigerants for lubricated rolling contact fatigue experiments. Traditional bench testing using refrigerants as the lubricant is difficult due to the gaseous phase at standard atmospheric conditions. Pressurising the concentrated contact test chamber is therefore necessary to evaluate at a liquid state and therefore simulate practical applications. The gas/liquid phase transitions have a significant influence on the lubricant properties and hence wear mechanisms. It is necessary to modify the wear test conditions for the Hydrocarbon (HC) and Hydrofluorocarbon refrigerants to obtain realistic simulation of refrigerator compressor tests. The chamber design and test rig are described in this paper. A preliminary experimental study of the influence of the HC (R600a) on rolling wear of the silicon nitride (Si3N4)/steel elements using the pressurised chamber is presented. Rolling fatigue test methods are adopted to measure the wear performance of silicon nitride/steel bearing materials. In this case the rolling wear mechanisms of Si3N4 were measured using R600a refrigerant lubrication.  相似文献   

5.
刘可心  王蕾  杨晨  金松哲 《复合材料学报》2020,37(11):2844-2852
以Ti3SiC2陶瓷粉和Cu粉作为原料,采用放电等离子烧结(SPS)工艺制备Ti3SiC2/Cu块体复合材料,研究不同Ti3SiC2添加含量及烧结温度对Ti3SiC2/Cu复合材料的组织、致密度和显微硬度的影响,研究SPS后Ti3SiC2/Cu复合材料的摩擦磨损性能。研究表明:采用SPS工艺制备的Ti3SiC2/Cu复合材料的Ti3SiC2在Cu中分布均匀,但随着Ti3SiC2含量的增加和烧结温度的升高,组织中出现团聚趋势,部分Ti3SiC2与Cu在界面处发生互溶现象,互溶增强了Ti3SiC2与基体的结合能力;Ti3SiC2含量和烧结温度对Ti3SiC2/Cu复合材料的致密度和显微硬度影响较大,当烧结温度为900℃时,Ti3SiC2/Cu复合材料的致密度达到99.7%,接近完全致密,Ti3SiC2/Cu复合材料的硬度较纯Cu提高了2倍左右;对于不同Ti3SiC2含量的Ti3SiC2/Cu复合材料的磨损机制也有所差异,当Ti3SiC2含量较低时(1vol%~5vol%),磨损机制为磨粒磨损和黏着磨损;随着Ti3SiC2含量的增加(10vol%~15vol%),Ti3SiC2发挥了本身的自润滑性,Ti3SiC2/Cu复合材料的摩擦磨损性能有所改善,磨损机制转为犁削磨损和轻微黏着磨损;当Ti3SiC2含量增加到20vol%时,Ti3SiC2/Cu复合材料的磨损表面变得均匀而平整,表明Ti3SiC2/Cu复合材料的耐磨性提高。   相似文献   

6.
This report examines the role of microstructure of a new type of cutting tool material on an existing relationship between its abrasion wear resistance, fracture toughness (KIC), and hardness (H). Three alumina-silver composites with different amounts of metal particles have been prepared, and their hardness and fracture toughness properties have been determined together with the assessment of their microstructural features such as volume fraction of the second phase, porosity, etc. The mechanical wear on the flanks of cutting tool inserts, made from the developed composites, has also been estimated by machining experiments against 0.45% carbon steel. The results indicate that flank wear resistance of these silver toughened ceramic cutting tool inserts is not proportional to an existing wear resistance parameter KIC3/4H1/2. A modified relation between flank wear resistance, hardness, and fracture toughness has been suggested here for these cutting tool materials. The modification incorporates consideration of the volume fraction of the second phase and the porosity in the developed metal toughened ceramics.  相似文献   

7.
Fracture toughness and notch ductility tests were performed on two heats of A508 steel tested over the temperature range between 100°C and 450°C. Both types of experiments showed that the materials exhibited a ductility trough at temperatures close to 300°C. At this temperature tensile tests showed the existence of strain aging phenomenon. Tests on axisymmetric notched tensile specimens were used to derive the critical value for void growth, Rc/R0, used in a model for ductile fracture. A good correlation between JIc and Rc/R0 was observed. This was used to predict the variations of JIc with temperature. A reasonable agreement between the predicted values and the experimental results is observed.  相似文献   

8.
The purpose of this work is to investigate the influence of the preexistent oxide film on friction process between the forming tool and the tube, during the piercing in hot metal forming. A wear behavior of a low alloy steel (28NCDV10) is studied on a cylinder-ring tribometer. Two different atmospheres, which are air and steam, are employed for oxidizing the rings at 85O°C. The experimental results of rings without pre-oxidation exhibit a severe oxidation wear and metal transfer from the cylinder to the ring. While the oxidation of the rings, notably in the case of steam, shows a decrease in the wear rate. For a comparison with metallic materials, we considered some ceramic materials: A12O3, Al2O3-TiO2 We find that the metallic materials pre-oxidized in steam have a better behavior than all the other materials tested.  相似文献   

9.
The in-situ TiB2 particle reinforced aluminum matrix composites are materials that are difficult to machine, owing to hard ceramic particles in the matrix. In the milling process, the polycrystalline diamond (PCD) tools are used for machining these materials instead of carbide cutting tools, which significantly increase the machining cost. In this study, ultrasonic vibration method was applied for milling in-situ TiB2/7050Al metal matrix composites using a TiAlN coated carbide end milling tool. To completely understand the tool wear mechanism in ultrasonic-vibration assisted milling (UAM), the relative motion of the cutting tool and interaction of workpiecetool-chip contact interface was analyzed in detail. Additionally, a comparative experimental study with and without ultrasonic vibration was carried out to investigate the influences of ultrasonic vibration and cutting parameters on the cutting force, tool life and tool wear mechanism. The results show that the motion of the cutting tool relative to the chip changes periodically in the helical direction and the separation of tool and chip occurs in the transverse direction in one vibration period, in ultrasonic vibration assisted cutting. Large instantaneous acceleration can be obtained in axial ultrasonic vibration milling. The cutting force in axial direction is significantly reduced by 42%-57%, 40%-57% and 44%-54%, at different cutting speeds, feed rates and cutting depths, respectively, compared with that in conventional milling. Additionally, the tool life is prolonged approximately 2-5 times when the ultrasonic vibration method is applied. The tool wear pattern microcracks are only found in UAM. These might be of great importance for future research in order to understand the cutting mechanisms in UAM of in-situ TiB2/7050Al metal matrix composites.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-020-00294-2  相似文献   

10.
为了提高铜基摩擦材料在高速干摩擦条件下的耐磨性能和具有稳定的摩擦系数,通过粉末冶金方法,制备了铜-SiO2摩擦材料.在摩擦速度为1.6~47.1 m/s条件下,研究了SiO2含量、粒度及摩擦方式对材料摩擦磨损性能的影响.研究表明:材料的摩擦系数和磨损率随着SiO2含量的增加而略有增大;SiO2颗粒尺寸的变化,对摩擦系数影响不显著;摩擦方式对材料的摩擦磨损性能的影响明显.SiO2含量增加有利于提高摩擦系数归因于增加了摩擦面高硬度质点的数量.干摩擦条件下影响材料摩擦磨损性能的一个重要因素是摩擦方式.在高速摩擦条件下,形成的第三体组织致密而连续,这种致密而连续的第三体有利于降低磨损量,并明显降低由于摩擦速度不同而导致的摩擦系数的波动程度.  相似文献   

11.
TiC deposition experiments were performed on high speed steel and on Si3N4-TiC composite ceramic cutting tools through chemical vapor deposition (CVD) using gaseous mixture of TiCl4, CH4, and H2. The effects of the deposition temperature and the composition of reactant gases on deposition rate, structure and microhardness of the TiC film were investigated. Experimental apparatus and deposition procedures are also presented. Deposition at 1323K with (CH4/TiCl4) ratio of 1.2 gives the optimum mechanical properties of the film for AISI M2 steel substrate while Si3 N4-TiC composite shows its maximum strength at 1373K and 1.3(CH4/TiCl4).  相似文献   

12.
Austenitic stainless steels are hard materials to machine, due to their high strength, high ductility and low thermal conductivity. The last characteristic results in heat concentration at the tool cutting edge. This paper aims to optimize turning parameters of AISI 304 stainless steel. Turning tests have been performed in three different feed rates (0.2, 0.3, 0.4 mm/rev) at the cutting speeds of 100, 125, 150, 175 and 200 m/min with and without cutting fluid. A design of experiments (DOE) and an analysis of variance (ANOVA) have been made to determine the effects of each parameter on the tool wear and the surface roughness. It is being inferred that cutting speed has the main influence on the flank wear and as it increases to 175 m/min, the flank wear decreases. The feed rate has the most important influence on the surface roughness and as it decreases, the surface roughness also decreases. Also, the application of cutting fluid results in longer tool life and better surface finish.  相似文献   

13.
The cutting performance of CVD-Ti(C,N)/Al2O3(Tl), CVD-Ti(C,N)/Al2O3/ TiN(T2) and PVD-TiN(T3) coated inserts was investigated in the dry turning of a low alloy steel. The PVD-TiN single-layer coated insert presented a better cutting performance based on wear and material removal indices than the CVD multilayer coated inserts at low feed rate. At high feed rate, it was the CVD-Ti(C,N)/Al2O3 coated insert that gave the best cutting performance. While excessive nose wear and plastic deformation limited the tool lives of Tl and T2, it was chipping/fracture for T3. Cutting temperature was deduced to have more effect on chip serrations than did degree of work hardening; with PVD-TiN inducing the highest degree of work hardening and lowest cutting temperature. Microstructural evidence also suggested brittle deformation and dissolution/diffusion as the wear mechanisms on T3, and plastic deformation, interfacial, and surface fatigue cracks were the observed phenomena for Tl and T2.  相似文献   

14.
采用化学沉淀法制备掺杂Zn的β-磷酸钙(β-TCP)粉末,Zn-β-TCP与Ti粉以3∶7(质量比)混合均匀经真空烧结得到Zn-β-TCP/Ti生物复合材料。结合金相观察、SEM、XRD等进行微观组织和表面形貌观察、物相分析,并进行显微硬度、摩粒磨损、单轴压缩和体外生物活性测试。结果表明:Zn-β-TCP粉体中粒径(D50)集中在1~20 μm。β-TCP/Ti生物复合材料成分为TiO2、Ti、β-TCP和CaTiO3,Zn-β-TCP/Ti复合材料成分为TiO2、Ti、β-TCP、CaTiO3和ZnO,Zn2+固溶到β-TCP晶格使衍射峰偏移,掺杂10mol% Zn的偏移角度最大。β-TCP结晶度随Zn掺杂量的增大而降低。β-TCP/Ti复合材料的TiO2相弥散分布在网状β-TCP相中,Zn摩尔分数为10mol%时,Zn-β-TCP/Ti复合材料的孔隙孔径在200~300 μm,满足工程支架材料的要求,且硬度最高为HV 346.2,磨损率最低为0.051 mgmm-2,抗压强度在130~180 MPa之间,弹性模量最大为8.021 GPa,Zn的加入提高了β-TCP/Ti复合材料的力学性能。类骨磷灰石的积累随在模拟体液中浸泡时间的延长而增多,Zn-β-TCP/Ti生物复合材料具有良好的生物活性。  相似文献   

15.
Five commercially available ceramic tool inserts were used for studying the machining characteristics of grey cast iron. These inserts from three suppliers were shown to behave as two groups. The first group containing Al203 and Al203/Zr02 showed low wear rates over a wide range of cutting speeds and these wear rates were essentially speed independent. This group showed considerable fracture tendency in the speed range 250m/min - 500 m/min. Alumina tools containing TiC/TiN showed higher wear rates which were both speed and TiC content dependant. High TiC content tools demonstrated high wear rates at low speeds and vice versa. TiN appeared to have little, if any, effect on wear rate. The presence of TiC and TiN also appeared to suppress the fracture tendency in the speed range 250m/min - 500 m/min.  相似文献   

16.
利用真空热压烧结技术制备了VN-Ag-MoO3复合材料,研究了Ag2MoO4对VN基复合材料组织结构及宽温域摩擦磨损性能的影响。结果表明:VN-Ag-MoO3复合材料组织较致密,主要由VN、MoO3和Ag组成,其中均匀分布于VN基体的MoO3和Ag由Ag2MoO4经高温分解形成。宽温域摩擦磨损测试表明,Ag2MoO4的添加有效改善了室温(RT)~700℃温域范围VN陶瓷的摩擦磨损性能。其中,700℃时Ag2MoO4含量为10wt%的VN-10Ag-MoO3的摩擦系数(0.285)和磨损率(1.37×10?5 mm3/(N·m))分别较VN降低了23%和72%,这归因于磨损表面的氧化钒、钒酸银和钼酸银等高温润滑相起到了优异的润滑及减磨作用。   相似文献   

17.
肖华强  赵思皓 《复合材料学报》2020,37(10):2501-2511
通过对比分析Ti3AlC2-Al2O3/TiAl3复合材料在纯腐蚀、纯磨损及熔蚀-磨损三种条件下的材料流失特征,研究了Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的熔蚀-磨损行为及熔蚀与磨损的交互作用机制。结果表明,Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的熔蚀-磨损体积损失比H13钢的体积损失低了两个数量级,随着载荷和转速的上升,Ti3AlC2-Al2O3/TiAl3复合材料的磨损由磨粒磨损逐渐向黏着磨损转变。Ti3AlC2-Al2O3/TiAl3复合材料的熔蚀、磨损交互作用率的最大值为47.5%,在低载荷或低转速条件下由于铝熔体的润滑作用,Ti3AlC2-Al2O3/TiAl3复合材料甚至表现出负的交互作用。这一方面是由于Ti3AlC2-Al2O3/TiAl3复合材料在Al液中腐蚀时不生成其它界面产物,而仅为极少量Ti元素的溶解;另一方面则是由于TiAl3基体与Al2O3二者所形成的空间网络状结构改善了Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的耐磨损性能。   相似文献   

18.
C.V.D. coating of the reinforcing ceramic particles used in particulate metal matrix composites allows the control of reactivity at the particle/matrix interface. Wear resistant high speed steel-based composites containing uncoated A1203, uncoated TiC and C.V.D. coated A1203 were liquid phase sintered, then characterized using “pin-on-disc” wear testing. TiC or TiN C.V.D. coatings of A1203 were tested to determine die increase in reactivity of the particles with the liquid phases formed during sintering. This resulted in a porosity decrease at the particle/matrix interface in addition to a better ceramic/metal cohesion due to improved wettability. Reactivity and wettability were studied using differential thermal analysis, electron microprobe analysis, transmission electron microscopy, and image analysis. Results from pin-on-disc wear testing illustrated the role of the C.V.D. coating on the wear behavior of the studied materials. Lower wear rates were obtained with the composites containing TiC or TiN-coated Al203. These results showed that there is a relation between wettability of ceramic particles by the metallic phases and wear resistance of the composites.  相似文献   

19.
通过对陶瓷摩擦组元的表面进行化学镀铜来改善铜基粉末冶金摩擦材料中陶瓷相与基体间的结合效果,从而提高材料摩擦磨损性能。分别采用镀铜Al2O3颗粒和未镀铜Al2O3颗粒与铜粉和铁粉等经混合、压制、加压烧结制备Al2O3-Fe-Sn-C/Cu摩擦磨损试样。测试并分析了摩擦材料的微观结构、力学性能及摩擦磨损性能。结果表明:摩擦组元镀铜可使硬质颗粒与铜基体结合紧密;摩擦材料的布氏硬度增加了12%,弹性模量提高了约7%,摩擦系数提高了5%~10%,线磨损量降低了20%~50%;表面镀铜后的Al2O3颗粒不易脱落,摩擦系数稳定性提高了13%~23%。研究结果表明,摩擦组元表面镀铜可提高材料的综合性能。  相似文献   

20.
The effects of volume fraction, Al2O3 particle size and effects of porosity in the composites on the abrasive wear resistance of compo-casting Al alloy MMCs have been studied for different abrasive conditions. It was seen that porosity in the composites is proportional to particle content. In addition, process variables like the stirring speed, and the position and diameter of the stirrer affect of the porosity content in a way similar to that observed for particle content. In addition, the abrasive wear rates of composites decreased more rapidly with increase in Al2O3 volume fraction in tests performed over 80 grade SiC abrasive paper than in tests conducted over 220 grade SiC abrasive paper. Furthermore, the wear rates decreased with increase in Al2O3 size for the composites containing the same amount of Al2O3. Hence, it is deduced that aluminium alloy composites reinforced with larger Al2O3 particles are more effective against abrasive wear than those reinforced with smaller Al2O3 particles. At the same time the results show that the beneficial effects of hard Al2O3 particles on wear resistance far surpassed that of the sintered porosity in the compocasting metal-matrix composites (MMCs). Nevertheless, the fabrication of composites containing soft particles such as graphite favors a reduction in the friction coefficient. For this reason graphite and copper were used in the matrix in different amounts to detect their effect on wear resistance. Finally, it was seen that wear rate of the composites decreased considerably with graphite additions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号