首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hybrid formulation which combines the method of moments (MM) with the finite element method (FEM) to solve electromagnetic scattering and/or absorption problems involving inhomogeneous media is discussed. The basic technique is to apply the equivalence principle and transform the original problem into interior and exterior problems, which are coupled on the exterior dielectric body surface through the continuities of the tangential electric field and magnetic field. The interior problem involving inhomogeneous medium is solved by the FEM, and the exterior problem is solved by the MM. The coupling of the interior and exterior problems on their common surface results in a matrix equation for the equivalent current sources for the interior and exterior problems. Combining advantages of both methods allows complicated inhomogeneous problems with arbitrary geometry to be treated in a straightforward manner. The validity and accuracy of the formulation are checked by two-dimensional numerical results, which are compared with the exact eigenfunction solution, the unimoment solution, and Richmond's pure moment solution  相似文献   

2.
This paper presents a hybrid method, which couples the vector finite element method (FEM) and method of moment (MOM) for analyzing the field and current distribution of the millimeter wave circuits. The FEM is applied to handle the interior region of dielectric bodies and MOM is used to solve surface integral equations. Then, These integral expressions are coupled into the FEM equations through the continuity of the tangential fields across the connection boundaries. Simultaneously, the short-open calibration (SOC) technique is used for predicting accurately the scattering parameters of the circuits. Numerical results are well compared with those published in the previous literatures.  相似文献   

3.
A hybrid technique that combines the method of moments (MoM) and the finite element method (FEM) to analyze cavity-backed patch antennas is presented. This technique features the use of FEM in solving the electromagnetic field distribution in the cavity and the use of MoM in solving integral equations outside the cavity. The results of MoM and FEM are combined through the continuity conditions on the boundary of the cavity. Due to the flexibility of FEM, complex cavities filled with inhomogeneous media can be analyzed by this technique. The results obtained by this hybrid technique are compared to the finite difference time domain (FDTD) results and good agreement is found  相似文献   

4.
This paper describes a hybrid technique directly operating in time domain that combines the finite element time domain (FETD), the finite-difference time-domain (FDTD) and the integral-equation-based method of moments in the time domain (MoMTD) techniques to analyze complex electromagnetic problems involving thin-wire antennas radiating in the presence of inhomogeneous dielectric bodies whose shape can be arbitrary. The method brings together the ability of the FDTD scheme to deal with arbitrary material properties, the versatility of the FETD to accurately model curved geometries, and that of the MoM to analyze thin-wire structures. Working in the time domain provides wide-band information from a single execution of the marching-on-in-time procedure and simplifies the interfacing of the FE and MoM methods with the FDTD, an approach specifically designed for time domain analysis. Numerical results that validate the hybrid method and show its capabilities are presented in the paper.  相似文献   

5.
A new hybrid time domain method is presented which combines three well-known numerical techniques. i.e. the finite difference time domain (FDTD) method, finite element (FE) method and method of moments (MoM). The hybrid scheme has been designed to handle complex geometries comprising arbitrary thin-wire structures and inhomogeneous dielectric regions the shape of which can also be arbitrary. Numerical results are presented which illustrate the accuracy of the method  相似文献   

6.
A new hybrid technique is presented which combines the method of moments with the finite difference time domain (FDTD) method to analyse electrically short, thin-wire antennas located in the vicinity of inhomogeneous dielectric bodies. The antennas are dealt with in the frequency domain using the NEC coder while the FDTD method is used to analyse the inhomogeneous part of the problem. The two sub-problems are combined by invoking the equivalence theorem  相似文献   

7.
A Newton's iterative scheme for electromagnetic imaging is proposed for reconstruction of the dielectric properties of inhomogeneous, lossy bodies with arbitrary shape. The algorithm is based on a finite element (FE) representation which is coupled to a boundary element (BE) formulation for the forward solution of the electric fields; together these are termed the hybrid element method. It utilizes FE discretization of only the area of interest while incorporating the RE method to match the conditions of the homogeneous background region extending to infinity. This paper presents image reconstruction for the 2D TM polarization case where two classes of dielectric distributions are studied which demonstrate the flexibility of this method along with some of the difficulties associated with larger imaging problems  相似文献   

8.
A numerical procedure for the solution of electromagnetic scattering problems involving inhomogeneous dielectric cylinders of arbitrary cross section is discussed. The cases of illumination by both transverse magnetic (TM) and transverse electric (TE) plane waves are considered. The scattering problems are modeled via a hybrid integral-equation/partial-differential-equation approach. The method of moments is applied to obtain a system of simultaneous equations that can be solved for the unknown surface current densities and the interior electric field. The interior region partial differential equation and the exterior region surface integral equation are coupled in such a manner that many existing surface integral equation computer codes for treating problems involving scattering by homogeneous dielectric cylinders can be modified easily to generate the block of the matrix corresponding to the surface current interactions. The overall system matrix obtained using the method of moments is largely sparse. Numerical results are presented and compared with exact solutions for homogeneous and inhomogeneous circular cylinders  相似文献   

9.
This paper presents an application of the edge-based vector finite element method to scattering problems of anisotropic and inhomogeneous objects. Based on conventional FEM functional, a hybrid finite element-surface integral formulation is established by introducing permittivity and permeability tensors. The space domain is divided into interior and exterior regions by an imaginary surface conformal to the scatterer. Edge vector finite elements are used to model the anisotropic and inhomogeneous interior, and a surface integral equation is used to model the unbounded exterior. Compared to other hybrid techniques, the approach here retains the symmetry and sparsity of the FEM matrix and introduces only one type of unknown equivalent current in the moment matrix equation. To validate the theory, typical 2-D numerical results are first presented, which show excellent agreement with exact eigenmode expansion solutions or accurate MoM data  相似文献   

10.
An E-field integral equation for the computation of the radar cross section of finite composite conducting and lossy inhomogeneous dielectric bodies is presented. The equivalence principle is used to replace all conducting bodies by an equivalent surface electric current, and the dielectric is replaced by an equivalent volume polarization current. The respective boundary conditions on the dielectric and the conductor are utilized to solve for the electric current on the entire structure. Also the augmented conjugate gradient method is presented for the solution of extremely large systems of equations that arise in the present problem. Finally, typical results are presented to illustrate the potential of this method  相似文献   

11.
A time-domain surface integral equation approach based on the electric field formulation is utilized to calculate the transient scattering from both conducting and dielectric bodies consisting of arbitrarily shaped complex structures. The solution method is based on the method of moments (MoM) and involves the modeling of an arbitrarily shaped structure in conjunction with the triangular patch basis functions. An implicit method is described to solve the coupled integral equations derived utilizing the equivalence principle directly in the time domain. The usual late-time instabilities associated with the time-domain integral equations are avoided by using an implicit scheme. Detailed mathematical steps are included along with representative numerical results  相似文献   

12.
A simple and efficient numerical technique is presented to solve the electromagnetic scattering problem of coated conducting bodies of arbitrary shape. The surface equivalence principle is used to formulate the problem in terms of a set of coupled integral equations involving equivalent electric and magnetic surface currents which represent boundary fields. The conducting structures and the dielectric materials are modeled by planar triangular patches, and the method of moments is used to solve the integral equations. Numerical results for scattering cross sections are given for various structures and compared with other available data. These results are proved accurate by a number of representative examples  相似文献   

13.
When numerically modeling structures with imperfect conductors or conductors coated with a dielectric material, impedance boundary conditions (IBCs) can substantially reduce the amount of computation required. This paper incorporates the IBC in the finite-element method (FEM) part of a FEM/method of moments (FEM/MoM) modeling code. Properties of the new formulation are investigated and the formulation is used to model three practical electromagnetic problems. Results are compared to either measured data or other numerical results. The effect of the IBC on the condition number of hybrid FEM/MoM matrices is also discussed.  相似文献   

14.
A highly effective preconditioner is presented for solving the system of equations obtained from the application of the hybrid finite element-boundary integral (FE-BI) method to three-dimensional (3-D) electromagnetic scattering problems. Different from widely used algebraic preconditioners, the proposed one is based on a physical approximation and is constructed from the finite element method (FEM) using an absorbing boundary condition (ABC) on the truncation boundary. It is shown that the large eigenvalues of the finite element (FE)-ABC system are similar to those of the FE-BI system. Hence, the preconditioned system has a spectrum distribution clustered around 1 in the complex plane. Consequently, when a Krylov subspace based method is employed to solve the preconditioned system, the convergence can be greatly accelerated. Numerical results show that the proposed preconditioner can improve the convergence of an iterative solution by approximately two orders of magnitude for large problems.  相似文献   

15.
The paper presents an efficient procedure to calculate the electromagnetic field scattered by an inhomogeneous object consisting of N+1 linear isotropic homogeneous regions. The procedure is based on surface integral equation (SIE) formulations and the method of moments. The method of moments (MM) is used to reduce the integral equations for each homogeneous dielectric region into individual matrices. These matrices are each solved for the equivalent electric current in terms of the equivalent magnetic current. A simple algebraic procedure is used to combine these solutions and to solve for the magnetic current on the outer dielectric surfaces of the scatterer. With the magnetic current determined, the electric current on the outer surface of the scatterer is calculated. Because the matrix corresponding to each dielectric region is solved separately, the authors call this procedure the region-by-region method. The procedure is simple and efficient. It requires less computer storage and less execution time than the conventional MM approach, in which all the unknown currents are solved for simultaneously. To illustrate the use of the procedure, the bistatic and monostatic radar cross sections (RCS) of several objects are computed. The computed results are verified by comparison with results obtained numerically using the conventional numerical procedure as well as via the series solution for circular cylindrical structures. The possibility of nonunique solutions has also been investigated  相似文献   

16.
A simple moment-method solution is presented for the problem of electromagnetic scattering from structures consisting of multiple perfectly conducting and dielectric bodies of arbitrary shape. The system is excited by a plane wave. The surface equivalence principle is used to replace the bodies by equivalent electric and magnetic surface currents, radiating into an unbounded medium. A set of coupled integral equations, involving the surface currents, is obtained by enforcing the boundary conditions on the tangential components of the total electric and magnetic fields. The method of moments is used to solve the integral equations. The surfaces of the bodies are approximated by planar triangular patches, and linearly varying vector functions are used for both expansion and testing functions. Some of the limitations of the method are briefly discussed. Results for the scattering cross sections are presented. The computed results are in very good agreement with the exact solutions and with published data  相似文献   

17.
A hybrid technique is presented that combines the finite element and boundary integral methods for simulating electromagnetic scattering from body-of-revolution (BOR) objects. This technique correctly models the boundary conditions along the axis of revolution in both the finite element and boundary integral formulations and yields highly accurate solutions. Because of the decoupled computations for the finite element and boundary integral equations, the technique is highly efficient as compared to the method of moments, especially for BORs comprising layered or inhomogeneous materials. It is applicable to a variety of complex, large-size BOR objects consisting of perfect conductors, anisotropic impedance surfaces, anisotropic resistive surfaces, and anisotropic inhomogeneous materials.  相似文献   

18.
磁感应成像(MIT)3维正问题中,直接求解法计算有限元方程组时,计算速度慢且因舍入误差造成计算结果不正确。该文为了解决这一问题,采用不完全乔列斯基分解共轭梯度(ICCG)迭代求解法。基于ANSYS平台建立有限元数值模型,采用ICCG法迭代求解。通过仿真实验获得设定收敛容差的最优值。对仿真结果进行对比,与直接求解法、雅克比共轭梯度(JCG)法相比,ICCG法计算速度快、稳健性高。计算结果表明ICCG法受网格粗细影响小,能够正确求解磁感应成像3维正问题。  相似文献   

19.
This article deals with a hybrid numerical method for solving harmonic Maxwell equations in the classical electrodynamic context. This formulation can be used with any body of arbitrary three-dimensional geometry, of perfectly conducting material or dielectric, with locally inhomogeneous and anisotropic behavior laws, and with or without dielectric losses. The mathematical formulation is presented along with applications validating it. The exterior problem is treated by the integral equation method while local equations are used for the dielectric parts of the body. A global variational formulation of the coupled problem is developed for use in discretization by the finite element method. Boundary finite elements are used for integral operators connected with the exterior problem. Localized finite elements are used for the interior problem. Difficulties of irregular frequencies, also called resonant frequencies in the perfectly conducting case, arising from the integral formulation are analyzed in detail and an efficient solution is developed  相似文献   

20.
The anisotropic Perfectly Matched Layer(PML) absorbing boundary condition is implemented in a 2-D finite element formulation to solve dielectric waveguide discontinuity problems. The choice of parameters of anisotropic PML has been investigated. Using the boundary truncating technique, the solution process of Finite-Element Method (FEM) has been greatly simplified compared with other hybrid methods. The required computational resources have also significantly declined since the anisotropic PML interface can be placed much closer to the scatterer compared to other well known artificial boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号