首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitroglycerin (NTG) produces vasodilation by releasing nitric oxide (NO) at the cellular level. Other studies have suggested that NO may directly alter vascular permeability and may alter the development of tissue injury. We therefore examined the effects of NTG on vascular permeability in the buffer-perfused rabbit lung under normal conditions and during lung injury. Vascular permeability was assessed by measurement of the capillary filtration coefficient (Kf,c). In normal lungs, NTG did not alter Kf,c or the rate of weight gain. Oxidant lung injury was produced by the addition of purine and xanthine oxidase and resulted in increased Kf,c and increased weight gain. However, NTG did not alter these effects of oxidant lung injury. We conclude that NTG does not alter pulmonary vascular permeability in either normal or oxidant-injured lungs.  相似文献   

2.
CuZn superoxide dismutase (SOD) secretion was detected in media of [35S]cysteine-labeled human neuroblastoma SK-N-BE cells precipitated with antihuman CuZn SOD antibodies. The ability of Fe2+/ascorbate oxidative stress to induce CuZn SOD in SK-N-BE cells was evaluated by Western blot analysis. The results showed that, like human hepatocarcinoma cells and human fibroblasts, SK-N-BE cells secrete CuZn SOD. In addition, the CuZn SOD concentration was higher in cells subjected to oxidative stress than in unstressed cells. The secretion of CuZn SOD and the ability of Fe2+/ascorbate to increase its protein content in SK-N-BE cells indicates that this enzyme protects the brain from damage induced by oxidative stress.  相似文献   

3.
BACKGROUND: The lung is particularly susceptible to reperfusion injury, both experimentally and clinically after transplantation. The extracellular-type preservation solution Celsior, which has been predominantly studied in cardiac preservation, has components designed to prevent cell swelling, free radical injury, energy depletion, and calcium overload. Using an isolated blood-perfused rat lung model, we investigated whether Celsior would decrease preservation injury and improve lung function after cold ischemic storage and reperfusion compared to Euro-Collins (EC) and University of Wisconsin (UW) solutions. METHODS: Lewis rat lungs were isolated, flushed with the respective cold preservation solution, and then stored at 4 degrees C for 6 or 12 hr. After ischemic storage, the lung block was suspended from a force transducer, ventilated with 100% O2, and reperfused for 90 min with fresh blood via a cannula in the pulmonary artery. Lung compliance, alveolar-arterial oxygen difference, and outflow oxygen tension were all measured. The capillary filtration coefficient (Kf), a sensitive measure of changes in microvascular permeability, was determined. RESULTS: For 6 hr of cold storage, lungs stored in Celsior had lower Kf values than those stored in EC, indicating decreased microvascular permeability. No other significant differences were noted between Celsior and EC or UW. For 12 hr of cold storage, Celsior provided increased oxygenation, decreased alveolar-arterial O2 differences, increased compliance, and decreased Kf values as compared to both EC and UW. CONCLUSIONS: Celsior provides better lung preservation than EC or UW as demonstrated by increased oxygenation, decreased capillary permeability, and improved lung compliance, particularly at 12-hr storage times. These results are highly relevant, inasmuch as EC and UW are the most common clinically used lung preservation solutions. Further studies of Celsior in experimental and clinical lung transplantation, as well as in other solid organs, are indicated.  相似文献   

4.
Average microvascular filtration pressure and vascular permeability measures were obtained in 100-microns glass bead-embolized dog lung lobes randomly assigned to groups in which isolated perfusion was designed to produce weight gain (edema groups) or no weight gain (isogravimetric groups). The solvent drag reflection coefficient (sigma), an index of vascular permeability, was obtained during edema formation, whereas isogravimetric capillary pressure was obtained during isogravimetry. Vascular permeability increased in response to embolism, because sigma was 0.53 +/- 0.03 vs. 0.80 +/- 0.05 (P < 0.005) in embolized and control lobes, respectively. Vascular occlusion methods indicated the greatest resistance increase in response to embolism in the vascular segment represented by Pao--Pdo (arterial occlusion pressure--double occlusion pressure). Because papaverine vasodilation reduced total vascular resistance (RT; P < 0.05) by decreasing Pao (P < 0.01) without altering Pdo, the RT increase in response to embolism was likely due to both vasoconstriction and obstruction. Because Pdo approximated capillary pressure at isogravimetry, Pdo appears to estimate average filtration pressure in both embolized (n = 6) and control lungs (n = 6). Arterial pressure was 56.2 +/- 13.6 vs. 17.6 +/- 1.5 cmH2O (P < 0.01) in embolized (n = 5) and control lobes (n = 6), respectively, whereas Pdo values of 16.1 +/- 1.5 vs. 12.4 +/- 0.8 (P < 0.05) suggested relatively little increase in filtration pressure in response to embolism. If the beads obstructed 100-microns vessels, the vascular segment represented by Pao--Pdo, the major site of vasoconstriction as well as mechanical obstruction, likely includes 100-microns arteries.  相似文献   

5.
Phorbol-myristate acetate (PMA) is commonly used to produce experimental edema and other tissue injuries in the lung. Lung injuries induced by the administration of PMA has been shown to be mediated mainly by neutrophils. Neutrophils recruited to the lower respiratory tract may damage lung tissues by releasing reactive oxygen species, neutral proteases, and lysosomal enzymes. The present study was conducted to investigate whether alpha-tocopherol, entrapped in dipalmitoylphosphatidylcholine liposomes and delivered directly to the lung, could counteract some of the PMA-induced lung injuries. Plain liposomes or alpha-tocopherol containing liposomes (8 mg alpha-tocopherol/kg body weight) were intratracheally instilled into the lungs of rats 24 hr prior to PMA exposure (25 micrograms/kg) and treated rats were killed 3 hr later. Lungs of control animals exposed to PMA developed an increase in lung weight and lipid peroxidation as well as a decrease in lung angiotensin converting enzyme (ACE) and alkaline phosphatase (AKP) activities. PMA treatment also caused an increase in myeloperoxidase (MPO) activity in the lung, suggestive of neutrophil infiltration. Pretreatment of PMA-treated rats with plain liposomes had no effect on PMA-induced injuries. In contrast, pretreatment of rats with liposomal alpha-tocopherol, 24 hr prior to PMA administration, resulted in a significant elevation of pulmonary alpha-tocopherol concentration, accompanied by a concomitant reduction in MPO activity and reversal of PMA-induced changes in lung edema, lipid peroxidation, ACE and AKP activities. These results appear to demonstrate that the intratracheal administration of a liposome-associated lipophilic antioxidant, such as alpha-tocopherol, can significantly ameliorate the toxic effects of reactive oxygen species, putatively released from PMA-stimulated pulmonary target cells and infiltrating neutrophils.  相似文献   

6.
We investigated the effects of pre-treatment with dibutyryl cAMP (db-cAMP) or cGMP on endotoxin-induced hemodynamic changes and pulmonary vascular permeability in isolated perfused rat lungs. Intraperitoneal injection of Salmonella enteritidis endotoxin (2 mg/kg) caused increases in pulmonary arterial resistance (Ra) after venous reservoir elevation, in pulmonary filtration coefficient (Kf) and in lung wet-to-dry (W/D) weight ratio. Pre-treatment with db-cAMP blocked endotoxin-induced increases in Ra, Kf and W/D weight ratio. Pre-treatment with cGMP attenuated only the increase in Ra caused by endotoxin. Moreover, administration of db-cAMP 2 hours after endotoxin injection attenuated the increase in Ra induced by endotoxin treatment. The increases in Kf and W/D weight ratio caused by endotoxin were not affected by post-treatment with db-cAMP. Since the increases in Ra, Kf and W/D weight ratio caused by endotoxin were blocked by pre-treatment with db-cAMP, agents that increase intracellular cAMP level may be useful to prevent acute pulmonary vascular injury.  相似文献   

7.
8.
The activity of glutathione peroxidase (GSH-Px) as well as the activities of other antioxidative enzymes: CuZn superoxide dismutase (CuZn SOD), catalase (CAT), glutathione reductase (GR) in erythrocytes, as well as the activity of plasma glutathione transferase (GST), and the plasma content of vitamins E and C were evaluated in 35 sporadic amyotrophic lateral sclerosis (sALS) patients. The results revealed significantly decreased activity of both GSH-Px and CuZn SOD in sALS patients compared with the control. These data showed that a disturbed oxidative/antioxidative balance in sALS patients exists not only in motoneurons but also in the blood. The effect of exogenously administered selenium (Se), antioxidants, amino acids, a Ca2+ channel blocker such as nimodipine, and their combination in Alsamin was evaluated by screening parameter levels after 9 weeks of treatment. Only the use of all components together enhanced the activity of GSH-Px and the amount of vitamin E in sALS patients. Judging by the results of clinical trials, this treatment slowed the course of the disease.  相似文献   

9.
The pharmacological mechanisms involved in the substance P (SP)-induced pulmonary oedema were studied in isolated perfused rabbit lungs. Substance P induced a dose-dependent increase in the capillary filtration coefficient (Kf,c), responsible for oedema. Atropine, hemicholinium-3 and ruthenium red pretreatment partly protected the lungs against SP effects, while tetrodotoxin and hexamethonium did not significantly modify them. (+/-)CP96,345, a NK1 receptor antagonist, completely inhibited the SP-induced increase in the Kf,c. Like SP, acetylcholine (ACh) and capsaicin also increased the Kf,c. Atropine and (+/-)CP96,345 completely blocked the oedema induced by both drugs. Tetrodotoxin and ruthenium red strongly inhibited the response to capsaicin and acetylcholine. It was concluded that SP-induced pulmonary oedema is in part mediated by a stimulating action on cholinergic efferent nerves, with subsequent release of endogenous acetylcholine. Acetylcholine can, in turn, stimulate the release of SP from excitatory non adrenergic, non cholinergic nerves. The effects induced by capsaicin and exogenous acetylcholine, thus endogenous SP, involve tetrodotoxin-sensitive mechanisms, while those produced by exogenous SP are tetrodotoxin-resistant.  相似文献   

10.
The effects of both recombinant rat tumor necrosis factor-alpha (TNF-alpha) and an anti-TNF-alpha antibody were studied in isolated buffer-perfused rat lungs subjected to either 45 min of nonventilated [ischemia-reperfusion (I/R)] or air-ventilated (V/R) ischemia followed by 90 min of reperfusion and ventilation. In the I/R group, the vascular permeability, as measured by the filtration coefficient (Kfc), increased three- and fivefold above baseline after 30 and 90 min of reperfusion, respectively (P < 0.001). Over the same time intervals, the Kfc for the V/R group increased five- and tenfold above baseline values, respectively (P < 0.001). TNF-alpha measured in the perfusates of both ischemic models significantly increased after 30 min of reperfusion. Recombinant rat TNF-alpha (50,000 U), placed into perfusate after baseline measurements, produced no measurable change in microvascular permeability in control lungs perfused over the same time period (135 min), but I/R injury was significantly enhanced in the presence of TNF-alpha. An anti-TNF-alpha antibody (10 mg/rat) injected intraperitoneally into rats 2 h before the lung was isolated prevented the microvascular damage in lungs exposed to both I/R and V/R (P < 0.001). These results indicate that TNF-alpha is an essential component at the cascade of events that cause lung endothelial injury in short-term I/R and V/R models of lung ischemia.  相似文献   

11.
The in vitro effect of recombinant human Granulocyte Macrophage Colony Stimulating Factor (rh-GMCSF) on the leishmanicidal activity and superoxide anion productivity of macrophages derived from human blood monocytes (MOs) were investigated. MOs treated with 25, 125, or 250 U/mL of rh-GMCSF for 72 h prior to infection with leishmania parasites, manifested significant dose-dependent increase in its leishmanicidal activities against Leishmania major and Leishmania donovani parasites. The percentage of increase in leishmanicidal activity of L. major-infected MOs were 22.71, 64.34 and 81.34, respectively while in L. donovani-infected MOs, it reached 3.01, 32.28 and 74.38, respectively. Treatment of leishmania-infected MOs with rh-GMCSF (250 U/mL) for different periods of time up to 96 hours, induced a significant time-dependent reduction in the percentage of infected cells and the parasitic load (No. of amastigotes/100 MOs). After 96 h of treatment with rh-GMCSF, the percentages of reduction in the infection rates were 82.45 in L.major-infected MOs (p < 0.001) and 39.65 in L. donovani-infected cells (p < 0.01). The percentage of reduction in the parasitic load reached 90.82 (p < 0.001) and 36.6 (p < 0.05) in MOs infected with L. major and L. donovani, respectively. The priming effect of rh-GMCSF on superoxide anion production by human MOs stimulated with phorbol myristate acetate (PMA) was both dose-dependent and time-dependent. In 72 hour-old human MOs, the maximum superoxide anion release was generated by MOs primed for 45 min with 500 U/mL of rh-GMCSF. These cells produced 8.960 +/- 2.075 nmol/5 x 10(4) MOs/ 180 min as compared to 4.563 +/- 1.773 nmol/5 x 10(4) unprimed cell control/180 min (p < 0.001).  相似文献   

12.
In this study, we evaluated the ability of low molecular weight manganese-based superoxide dismutase mimetics to attenuate neutrophil-mediated oxygen radical damage to human aortic endothelial cells in vitro. Human neutrophils, when exposed to tumor necrosis factor-alpha and the complement compound C5a, induced endothelial damage assessed by the release of 51Cr into the medium. This damage correlated with the amount of superoxide generated by neutrophils. Three superoxide dismutase mimetics, with catalytic rate constants for superoxide dismutation ranging from 4 to 9 x 10(7) M-1 S-1, inhibited neutrophil- or xanthine oxidase-mediated endothelial cell injury in a concentration-dependent manner. A similar manganese-based compound with no detectable superoxide dismutase activity was ineffective in inhibiting injury. Fluorescent studies of the neutrophil respiratory burst showed that the superoxide dismutase mimetics were protective without interfering with the generation of superoxide by activated neutrophils. Catalase, elastase inhibitors, and desferrioxamine mesylate (an iron chelator and hydroxyl radical scavenger) were not protective against cell injury. This investigation demonstrates that neutrophil-mediated human aortic endothelial cell injury in vitro is mediated by the superoxide anion and that low molecular weight manganese-based superoxide dismutase mimetics are effective in abrogating this damage.  相似文献   

13.
We studied the mechanisms by which the plant alkaloid tetrandrine (TTD) inhibits Mac-1-dependent neutrophil adhesion to fibrinogen. TTD (0.1-10 microM) significantly inhibited Mac-1 up-regulation and neutrophil adhesion, as induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol-myristate-acetate (PMA). Treatment of neutrophils with fMLP or PMA caused a rapid influx of Ca++ and accumulation of reactive oxygen species (ROS), both of which have been shown to enhance neutrophil adhesion via Mac-1 up-regulation. Because TTD antagonizes Ca++ influx and abrogates ROS, we examined the relationship between Ca++ influx, ROS formation, and Mac-1 expression in TTD-inhibited neutrophil adhesion. TTD alone caused a slight but statistically significant increase in [Ca++]i with no effect on adhesion. In contrast, TTD as well as two Ca++ channel antagonists, verapamil and nifedipine, markedly diminished fMLP- and PMA-induced Ca++ influx, Mac-1 up-regulation, and adhesion. TTD also inhibited increases in [Ca++]i and adhesion induced by the ionophore A23187 but failed to inhibit those induced by thapsigargin, an agent mobilizing Ca++ from intracellular stores. Thus, TTD impeded Ca++ influx from outward to avert neutrophil adhesion. Similarly, TTD and two ROS scavengers, superoxide dismutase and catalase, abolished ROS production, Mac-1 up-regulation, and neutrophil adhesion. Ca++ and ROS, therefore, represent two essential signals for Mac-1 up-regulation upon fMLP or PMA stimulation. Our data suggest that the antiadherent effect of TTD is mediated, in part, by the inhibition of Ca++ influx and ROS formation, resulting in suppressed up-regulation of Mac-1 and, in turn, neutrophil adhesion to fibrinogen.  相似文献   

14.
The effects of Neo Red Cell (NRC), a liposome-encapsulated hemoglobin (LEH), on the phorbol ester-induced superoxide production and the expression of costimulatory molecules by human peripheral monocytes were investigated. The treatment of human mononuclear cells with NRC caused the potentiation of superoxide production in response to PMA. The longer incubation (20 h) resulted in a decrease in the PMA-induced superoxide production, which was in parallel to a decrease in the viability of the monocytes. A flow cytometric analysis showed that a slight expression of CD80 (B7-1) on monocytes was induced by NRC treatment, whereas the constitutive expressions of CD86 (B7-2) and CD54 (ICAM-1) were unchanged. The activation of monocytes with interferon-gamma (IFN-gamma) induced the expressions of CD80, CD86, and CD54 under all conditions tested, but NRC treatment tended to decrease the IFN-gamma-induced expression of CD54 on monocytes. These results suggest that the administration of LEH may modify the functions of human monocytes.  相似文献   

15.
Staurosporine (STAR) is one of the most potent inhibitors of protein kinase C (PKC). It is known that in human polymorphonuclear leukocytes (PMNs), the phorbol ester-induced generation of superoxide anion (respiratory burst) is effectively inhibited by STAR in a dose-dependent manner, whereas superoxide generation induced by chemoattractants, e.g. n-formyl-methionyl-leucyl-phenylalanine (FMLP) or PAF, is regulated biphasically by STAR. We compared the effects of STAR and K252a on FMLP-induced superoxide production from PMNs and examined the effects of propranolol, a inhibitor of phosphatidic acid (PA) phosphohydrolase, on the potentiation of the production by STAR. We also examined the effects of some derivatives of STAR and K252a on the production and the alteration of the effects induced by propranolol pretreatment. When PMNs were stimulated with FMLP, STAR potentiated superoxide production by 240.5 +/- 30.9% at a low concentration (100 nmol/l). Propranolol pretreatment specifically inhibited the potentiation. When phorbol-12-myristate-13-acetate (PMA) was used as a stimulant, STAR inhibited superoxide production dose-dependently and did not enhance the production. K252a inhibited PMA or FMLP-induced superoxide production dose-dependently and did not enhance FMLP-induced superoxide production. STAR derivatives showed potentiation of FMLP-induced superoxide production similar to that of STAR at concentrations ranging from 10-100 nmol/l, and propranolol (200 mumol/l) effectively inhibited it. K252a derivative NA332 did not show any potentiative effect on the production. PMA-induced superoxide production was inhibited by all compounds dose-dependently.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular epithelium of chronically rejected human renal allografts. Western blot analysis of rejected tissue demonstrated that tyrosine nitration was restricted to a few specific polypeptides. Immunoprecipitation and amino acid sequencing techniques identified manganese superoxide dismutase, the major antioxidant enzyme in mitochondria, as one of the targets of tyrosine nitration. Total manganese superoxide dismutase protein was increased in rejected kidney, particularly in the tubular epithelium; however, enzymatic activity was significantly decreased. Exposure of recombinant human manganese superoxide dismutase to peroxynitrite resulted in a dose-dependent (IC50 = 10 microM) decrease in enzymatic activity and concomitant increase in tyrosine nitration. Collectively, these observations suggest a role for peroxynitrite during development and progression of chronic rejection in human renal allografts. In addition, inactivation of manganese superoxide dismutase by peroxynitrite may represent a general mechanism that progressively increases the production of peroxynitrite, leading to irreversible oxidative injury to mitochondria.  相似文献   

17.
The objective of this study was a validation of an optical multiple indicator dilution technique for measuring microvascular exchange parameters in edematous lungs by comparison to conventional radioisotope multiple indicator dilution methods. Six anesthetized dogs were studied at baseline and after alloxan infusion to increase capillary permeability. In addition, 11 isolated, perfused dog lungs were studied at baseline and after edema was created by increasing venous pressure or by infusing alloxan to increase vascular permeability. Increased capillary permeability from alloxan infusion led to increases in most but not all capillary exchange parameters as analyzed by mathematical models and measured by both optical and radioisotope methods. Increased vascular pressure led to increased edema but no significant increases in capillary exchange parameters. Two-way analysis of variance (ANOVA; variations in baseline versus pressure or alloxan and variation in optical versus radioisotope for each transport parameter derived from the mathematical models) indicated few significant differences in capillary exchange parameters between optical and radioisotope measures. Newman-Keuls multiple comparison tests did uncover some variations between a few of the group-mean values derived from optical and radioisotope methods. However, optical and radioisotope parameter measurements were highly correlated for all studies regardless of the mathematical model used for analysis.  相似文献   

18.
Two month-old Wistar male albino rats were exposed during a 30-day period to a daily oral intake ad libitum of either 200 microg/mL Cd (as CdCl2), 0.1 microg/mL Se (as Na-selenite), or the same dosages of Cd + Se in drinking water. The daily intake from the water was calculated to be 15 mg Cd/kg and 7 microg Se/kg. Cadmium (Cd) accumulates in the heart (p < 0.005) and, in rats, decreases both body mass growth (p < 0.005) and heart mass (p < 0.02). Selenium (Se) significantly decreases the negative effect of Cd on body mass growth. In the hearts of Cd-treated rats, cadmium caused the decrease (p < 0.05) of selenium-dependent glutathione peroxidase (GSH-Px, EC 1.11.1.9) activity. At the same time, the activities of total superoxide dismutase (total SOD, EC 1.15.1.1), manganese-containing superoxide dismutase (Mn SOD), and copper-zinc-containing superoxide dismutase (CuZn SOD) were increased (p < 0.005). The activities of total SOD, CuZn SOD (p < 0.005), GSH-Px (p < 0.02), and glutathione-S-transferase (GST, p < 0.005) were increased in the hearts of Se-treated rats. However, by concomitant administration of Cd and Se, these changes were diminished (total SOD, GST) or were completely eliminated (Mn SOD, GSH-Px). These results indicate that Se only partly diminishes the effects of Cd cardiotoxicity.  相似文献   

19.
All mutations in the human gene for CuZn superoxide dismutase (CuZnSOD) reported to date are associated with the disease amyotrophic lateral sclerosis (ALS). These mutations, mostly of a familial nature (ALS 1, MIM 105400), span all of the coding region of this enzyme except for a highly conserved centrally located domain that includes all of exon III. We describe the identification and characterization of two mutations in this region, both found in mice. One mutation, a glutamate to lysine amino acid substitution was found in position 77 (E77K) of the strain SOD1/Ei distributed by the Jackson Laboratory. The other mutation, a lysine to glutamate substitution at position 70 (K70E) of a human transgene, was discovered in mouse line TgHS/SF-155. Enzyme activity measurements and heterodimer analysis of the CuZn SOD variant in SOD1/Ei suggest a mild loss of activity, which differs from the enzyme activity losses detected in patients with autosomal dominant ALS 1. Similarly, the presence of the mutant transgene in TgHS/SF 155 does not produce any phenotypic manifestations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号