首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The behavior of a natural chromite from the Bushveld Complex, Transvaal, South Africa, during reduction at 1416 °C by graphite was studied by means of thermogravimetric analysis, X-ray diffraction (XRD) analysis, energy-dispersive X-ray analysis (EDAX), and metallographic analysis. Experimental runs were allowed to proceed up to 120 minutes, resulting in 99 pct reduction. The specific objective of this study was to delineate the reduction mechanism of chromite by graphite. Zoning was observed in partially reduced chromites with degrees of reduction of up to about 70 pct. The inner cores were rich in iron, while the outer cores were depleted of iron. Energy-dispersive X-ray analysis revealed that Fe2+ and Cr3+ ions had diffused outward, whereas Cr2+, Al3+, and Mg2+ ions had diffused inward. The following mechanism of reduction, which is based on the assumption that the composition of the spinel phase remains stoichiometric with increasing degree of reduction, is proposed, (a) Initially, Fe3+ and Fe2+ ions at the surface of the chromite particle are reduced to the metallic state. This is followed immediately by the reduction of Cr3+ ions to the divalent state, (b) Cr2+ ions diffusing toward the center of the particle reduce the Fe3+ ions in the spinel under the surface of the particle to Fe2+ at the interface between the inner and outer cores. Fe2+ ions diffuse toward the surface, where they are reduced to metallic iron, (c) After the iron has been completely reduced, Cr3+ and any Cr2+ that is present are reduced to the metallic state, leaving an iron- and chromium-free spinel, MgAl2O4. Formerly Postgraduate Student, Department of Metallurgy and Materials Engineering, University of the Witwatersrand. Formerly with the Department of Metallurgy and Materials Engineering, University of the Witwatersrand.  相似文献   

2.
Ho3+ doped ZBLAN glass with 2.0 and 2.9 μm emission was prepared. In order to further improve the luminescence of Ho3+, halogen ions (Cl, Br, I) were introduced to reduce the maximum phonon energy and phonon state density of the sample. At the same time, Nd3+ was introduced to transfer the energy to Ho3+ pumped with a 793 nm laser (Nd3+:4F5/2,4F3/2→Ho3+:5I6). The effect of different halogen ion on the luminescent properties of the fluoride halide glass was compared. The results show that the luminescent intensity of infrared increases with the introduction of different halogen ions. By comparison, it is found that the sample with I has the strongest luminescence of 1064 nm, 2.0 μm and 2.9 μm. This is consistent with the calculated J-O intensity parameters. In addition, the 2.0 and 2.9 μm emission of Ho3+ pumped with a 450 nm laser will not disappear. A mid-infrared sample with multi-wavelength excitation and multi-wavelength emission can be obtained. Nd3+/Ho3+ co-doped fluoride halide glasses with 1064 nm, 2.0 μm and 2.9 μm luminescence were prepared by melt quenching method. The luminescent mechanism and the energy transfer process between the two ions of Nd3+/Ho3+ co-doped fluoride halide glass were studied. The J-O parameters, luminescence lifetime and absorption emission cross-sectional area of Ho3+ and Nd3+ were calculated, respectively. It is found that the value of Ω2 in the glass matrix increases with the introduction of different halogen ions, while Ω4 and Ω6 do not change obviously in different glass compositions. This is because the environment of the crystal field around the rare earth ions changes. The crystal phase and phonon energy of the sample were analyzed by X-ray diffraction pattern and a Fourier transform infrared spectrometer, respectively. Based on the above spectra and data (phonon energy is 634.71 cm−1), it can be predicted that Nd3+/Ho3+ co-doped fluoride halide glass is a potential mid-infrared luminescent material.  相似文献   

3.
A yellow emitting long afterglow luminescence material SrSc2O4:Pr3+ was successfully prepared by solid state reaction method. SrSc2O4:Pr3+ phosphor shows a long afterglow luminescence peak at about 495, 545, 621, 630 and 657 nm, respectively, corresponding to the f–f transitions of Pr3+. The afterglow chromaticity coordinates of SrSc2O4:1 at%Pr3+ were calculated to be (0.35, 0.41), indicating that the afterglow emission is close to the light of yellow region. And, the afterglow luminescence of the optimal sample doped by 1 at%Pr3+ can persist for over 3 h. The thermoluminescence results suggest that there are three types of traps with depth of 0.61, 0.69 and 0.78 eV exiting for all the samples, which are produced by the addition of Pr3+ ions. The trap density of SrSc2O4:1 at%Pr3+ is the maximum when the incorporation of Pr3+ ions reaches 1 at%, which thus results in the longest afterglow luminescence. All the results indicate that SrSc2O4:Pr3+ can be a potential candidate of novel long afterglow phosphors.  相似文献   

4.
In this work,calcium niobium gallium garnet(Ca3 Nb1.6875Ga3.1875O12-CNGG) ceramic samples singledoped with Tb3+ and co-doped with Tb3+ and Yb3+ ions were sintered by the solid-state reaction method.The structural characterization of the samples was carried out by X-ray diffraction measurements.The optimal concentration of Tb3+ ions corresponding to the maximum luminescence in the green spectral range in CNGG:...  相似文献   

5.
The experimental results obtained for ionic and electronic conductivity of ‘FeO’-CaO-SiO2 melts have been analyzed considering the mechanism of each conduction process. The Nernst-Einstein equation was employed to calculate diffusion coefficients of Fe2+ and Ca2+ cations from ionic conductance. A “diffusion-assisted charge transfer” model was developed to explain the dependence of the electronic conductivity on the oxidation state of iron in the slag. The model considers the electronic conduction as a two-step process: in one step, ferrous ions diffuse from their initial position to a proper distance from ferric ions; in the next step, an electron is transferred between Fe2+ and Fe3+. The optimum distance of the iron ions for electron hopping was found to be approximately 4 Å, in great consistency with the values reported for electron transfer between Fe2+ and Fe3+ in aqueous solutions and solid glasses.  相似文献   

6.
Er3+/Yb3+-codoped transparent oxyfluoride borosilicate glass ceramics containing Ba2GdF7 nanocrystals were prepared and spectroscopic properties of rare earth ions were investigated.Fluoride nanocrystals Ba2GdF7 were successfully precipitated in glass matrix,which was confirmed by X-ray diffraction(XRD)and transmission electron microscopy(TEM)results.In comparison with the as-made precursor,significant enhancement ofupconversion luminescence was observed in the Er3+/Yb3+codoped oxyfluoride glass ceramics,which may be due to the variation of coordination environment around Er3+and Yb3+ions after crystallization.The transition mechanisms of the green and red upconversion luminescence were ascribed to a two-photon process,and that of the blue upconversion luminescence was a three-photon process.  相似文献   

7.
通过对火法冶炼镍基体料矿热炉渣化学组成和性质的研究,确定了测定微、痕量镍的实验方法。由于样品中二氧化硅含量在40%~65%,样品的分解难度很大,且对镍的测定存在严重的负干扰,因此需在样品分解过程中加入足量氢氟酸与之反应生成SiF4挥发除去。溶液中其余共存离子主要有Mg2+、Ca2+、Fe3+、Al3+、Cr6+等,其中Ca2+对测定存在严重的正干扰,通过向空白溶液中加入同量的钙可消除此干扰。高氯酸是最佳的分析介质,其浓度控制在3%~5%即可达到稳定分析。方法的检出限为0.001 2 mg/L。对4个火法冶炼镍基体料矿热炉渣实际样品中镍进行分析,回收率为99%~102%,相对标准偏差处于1.3%~2.9%范围内,与ICP-AES的分析结果相一致。  相似文献   

8.
We reported on the high pressure luminescence spectra of polycrystalline Eu-doped GaN material synthesized in the reaction between alloys of gallium, bismuth and europium in ammonia atmosphere. The integrated luminescence intensity of the dominant Eu3+ ion transition (5D07F2) at 622 nm increased approximately one order of magnitude whereas its spectral position and line width did not change significantly between ambient and 6.8 GPa pressure, respectively. Moreover, material was characterized with photo- and cathodo-luminescence, and photoluminescence excitation spectra at different temperatures. It was found that the Eu3+ ions occupying substitutional Ga site created different centers which could be effectively excited with above band gap excitation and from excitons resonantly photoexcited at the I2 bound exciton energy. Furthermore, the less efficient Eu3+ ions excitation path existed through intrinsic impurities and defects generating shallow energy levels in the forbidden gap. It was proposed that reduction of the thermal quenching and consequent enhancement of Eu3+ ion emission intensity resulted from stronger localization of bound exciton on RESI trap induced by applied pressure.  相似文献   

9.
Using polyethylene glycol (PEG) as the surfactant, Bi3.84W0.16O6.24 up-conversion luminescence nano-crystal co-doped with Yb3+ and Ho3+ ions was synthesized by the hydrothermal method. The structure and properties of luminescence powder were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). It was of cubic system when the sample was synthesized at a low temperature and the particle size was about 30 nm. The results showed that adding surfactants was useful to improve the powder agglomeration and the grain crystal was spherical. The green emission peak at 546 nm and red emission peak at 655 nm, corresponding to the ( 5F4, 5S2)→ 5 I 8 and the 5 F 5 → 5 I 8 transitions of Ho 3+ , respectively, were simultaneously observed at room temperature under excitation of 980 nm semiconductor laser. The up-conversion luminescence intensity was the strongest when the concentration ratio of Yb3+ /Ho3+ was 6:1 and the concentration of Ho 3+ ion was 1.5 mol.%. The up-conversion mechanism was also studied. The green and red emission peaks were the two-photon absorption according to the relationship between the pump power and the luminescence intensity.  相似文献   

10.
The Er3+doped double perovskite Ba2 CaWO6 crystal is a promising ratiometric thermometer based on the fluorescence intensity ratio(FIR) of transitions from 2 H11/2 and 4 S3/2to the lowered 4 I15/2 level.However,the Ca2+vacancy defect caused by the charge difference between rare-earth ions and the substituted alkaline-earth ions gives rise to the non-radiative probability and limits the t...  相似文献   

11.
Calcium tungstate phosphors activated by the Ln3+ ions(Ln=Pr, Nd, Tb, Yb) were synthesized by a traditional high-temperature solid-state method. The crystal structures and morphologies of the products were characterized by scanning electron microscopy(SEM), X-ray powders diffraction(XRD) and infrared spectra(FT-IR). The samples were found to show luminescence properties(down-conversion, DC, at excitation wavelength 254 nm and up-conversion, UC, at excitation wavelength 980 nm). CaWO4 doped with Tb3+/Yb3+ showed green DC and UC luminescence characteristic of Tb(III) ion in the range of 470–660 nm, corresponding to the 5D4→7F6,5,4,3,2 electronic transition. CaWO4 doped with Pr3+/Yb3+ showed week blue, green and red(DC and UC) luminescence of Pr(III) ion, in the wavelength region of 450–700 nm. Emission peaks were ascribed to the 3P1→3H4,5,6, 3P0→3H4,5,6, 3P1→3F2 and 3P0→3F2 transitions, respectively. CaWO4 doped with Nd3+/Yb3+ phosphor emitted orange UC luminescence at 450–690 nm(2P3/2→4I15/2, 4G7/2→4I9/2,11/2,13/2) and strong near-infrared UC luminescence at 720–900 nm(4F7/2+4S3/2→4I9/2, 4F5/2+2H3/2→4I9/2, 4F3/2→4I9/2) which is the characteristic of Nd(III) ion.  相似文献   

12.
For the purpose of development of highly energy-efficient light sources, one needs to design highly efficient green, red and yellow phosphors, which are able to absorb excitation energy and generate emissions. In this contribution, we present our results on producing some efficient phosphors with improved luminescence properties. Using double activation, energy could be transferred from one luminescent activator to the other one, resulting in more efficient or brighter device operation. Co-activators could be added to a host material to change the color of the emitted light. The incorporation of Eu3+ or Tb3+ ions into the CaWO4 crystal lattice modified the luminescence spectrum due to the formation of the emission centers that generated the specific red and green light. Very efficient new red phosphors based on YNbO4 and doped by Eu3+, Ga3+, Al3+ allowed recommending these materials as good candidates for different applications including LED and X-ray intensifying screens. For double activated TAG with Ce3+ and Eu3+ and for different mole ratios of Ce/Eu, the color temperature changed from 5500 K (0.331, 0.322) up to 4200 K (0.370, 0.381) and the light became “warmer”. Application of TAG: Ce, Eu in the light emitting device showed better chromaticity coordinates of luminescence and color rendering index of LEDs.  相似文献   

13.
A single-phase full-color emitting phosphor Sr2Ca2La(PO4)3O:Eu2+,Tb3+,Mn2+ was synthesized by the high temperature solid-state method. The phase formation, luminescence properties, thermal stability, and energy transfer from Eu2+ to Tb3+ and Eu2+ to Mn2+ in Sr2Ca2La(PO4)3O were investigated in details. Tunable emission color from blue to blueish green or orange can be observed under 365 nm near-ultraviolet excitation based on the energy transfer from Eu2+ to Tb3+ or Mn2+ ions by varying the ratio of Eu2+/Tb3+ or Eu2+/Mn2+ ions. White light was obtained with chromaticity coordinates of (0.3558, 0.3500) in the Sr2Ca2La(PO4)3O:0.04Eu2+,0.08Tb3+,0.40Mn2+ phosphor, suggesting their potential applications in white light emitting diodes.  相似文献   

14.
The sludge dewatering properties (settling, filtration and centrifugation) of metal precipitates generated during treatment of monometallic solutions (0.020 mol/L) have been evaluated in this research. The precipitation tests carried out on 15 different metals gave metal removal yields generally similar to those predicted by MINEQL+ software, with the exception that kinetic aspects should be considered during precipitation of metal sulphides and phosphates. Hydroxides precipitation at pH 10.0 was the most efficient technique for the removal of eight metallic ions (Al3+, Cd2+, Co2+, Fe2+, Fe3+, Mg2+, Mn2+, Ni2+), whereas phosphates precipitation (at pH 6.0 with an addition of 0.0133 mol PO43?/L) gave highest removal yields for Ba2+, Ca2+, Cr3+. Sulphides precipitation (at pH 7.0 and using, 0.020 mol S2?/L) has been found the most efficient technique only for Cu2+ and Sn2+ precipitation, whereas carbonates precipitation (at pH 8.0 and using 0.020 mol CO32?/L) gave better removal yield only for Pb2+. Results have also shown that metal phosphates have generally better dewatering characteristics (SVI, filtration capacity, SRF, sludge solids content) than metal carbonates, sulphides and hydroxides. In fact, considering only the sludge dewatering characteristics, phosphates precipitation appears the most appropriate technique for the precipitation of many metals (Al3+, Ba2+, Cd2+, Co2+, Cr3+, Fe2+, Fe3+, Ni2+ and Zn2+). Metal hydroxides formation constitutes the best option for Ca2+, Cu2+, Mg2+ and Sn2+ removal, whereas precipitation of metal carbonates is particularly interesting for treatment of Mn2+ and Pb2+ containing solutions.  相似文献   

15.
By heat treating the alkaline earth fluorosilicate glass, transparent glass ceramics containing alkaline earth fluoride nanocrystallites were prepared. The luminescence spectra and phonon sideband associated with the Eu^3+:^5D2→^7F0 in glass and glass ceramics were investigated to analyze the local environment around Eu^3+. Judd-Ofelt parameters were also calculated from emission spectra, which indicated that the Eu^3+ ions entered the precipitated CaF2, SrF2, and BaF2 nanocrystallites. Heat treating could not pledge Eu^3+ ions to coordinate with F^- in the precipitated MgF2 nanocrystallites, owing to the smaller radius of Mg^2+ than that of Eu^3+.  相似文献   

16.
Zirconium metal–organic frameworks ZrOBDC (where BDC = C6H4(COOH)2, terephthalic acid) doped and co-doped with rare earth ions Ln (ZrOBDC:Ln3+, where Ln3+ = Eu3+ and Tb3+ as well as Er3+ and Yb3+) were used as precursors for the design of tetragonal rare earth doped zirconia nanoparticles (t-ZrO2:Ln3+ NPs) through annealing process. Preparation, characterization and luminescence properties of ZrOBDC:Ln3+ and ZrO2:Ln3+ NPs were investigated. The as-obtained t-ZrO2:Ln3+ NPs have high purity with an average size of 20–30 nm. The luminescence spectra of ZrOBDC:Tb3+ and ZrOBDC:Eu3+ display strong green and red emission at around 544 and 611 nm which correspond to 5D4 → 7F5 and 5D0 → 7F2 transitions of Tb3+ and Eu3+ ions, respectively. The green and red up-conversion emissions of ZrO2:Er3+,Yb3+ NPs due to 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of the Er3+ ions are observed under 976 nm laser excitation.  相似文献   

17.
Investigations into the complexing ability of sulfur-containing collectors relative to metal ions (Cu2+, Ni2+, Fe2+, Co2+) at 298 K and an ion force of 0.075–0.75 mol/L (NaNO3) are carried out. It is established that potassium dibutyl dithiophosphate possesses the largest affinity to metal ions among phosphorus-containing collectors, while the maximal complexing ability is characteristic of the Co2+ ion. Series of thermal stability are found; the variations in enthalpy, entropy, and the Gibbs energy, as well as temperature-dependent and temperature-independent contributions of complexes of metal ions with collector anions into ΔG 0, are calculated.  相似文献   

18.
Photoluminescent hybrid materials containing carboxymethyl cellulose and lanthanide ions (Eu3+, Tb3+) were prepared by a facile method under ambient conditions. Lanthanide ions were covalently grafted to the cellulose framework through coordination with the carboxylic groups of the cellulose. Hybrid materials were fabricated as hydrogel and aerogel. As shown by SEM and pore parameters, aerogel materials which were obtained by supercritical CO2 drying show hierarchical porous structure. The photoluminescence spectrum of the hybrid materials shows the characteristic red emission of Eu3+ ion and green emission of Tb3+. Further luminescent investigations reveal that these hybrid materials can detect Fe3+ with relative selectivity and high sensitivity, which suggests that the hybrid materials could be a promising luminescent probe for selectively sensing Fe3+ ion.  相似文献   

19.
The Pb0.7Sr0.3[(Fe2/3Ce1/3)0.012Ti0.988]O3 (PSFCT) and Pb0.7Sr0.3[(Fe2/3La1/3)0.012Ti0.988]O3 nanoparticles were prepared by chemical synthesis route using polyvinyl alcohol as surfactant. X-ray diffraction pattern has been used to analyze the phase structure and average particles size. The phase structure is also confirmed by Raman spectra. The chemical states of Pb2+, Sr2+, Fe3+; Ti4+, Ce3+, La3+, and oxygen ions have been analyzed by X-ray photoelectron spectroscopy. The magnetoelectric coupling effect is confirmed by magnetic phase transition near ferroelectric phase-transition temperature. The magnetoelectric effect is also confirmed by measuring the value of magnetoelectric coefficient (α E) as the function of applied dc magnetizing field under the influence of ac magnetic field of 10 Oe and frequencies of 847 and 997 Hz. The higher value of α E is observed in PSFCT sample.  相似文献   

20.
研究了硫酸铵-碘化钾-十二烷基三甲基氯化铵微晶吸附体系浮选分离镉(Ⅱ)的行为及其与常见离子定量分离的条件。结果表明,在0.5 g (NH4)2SO4的存在下,当体系中Cd2+、KI、DTMAC同时存在时,体系中形成的三元缔合物(DTMAC)2(CdI4) 沉淀被定量吸附在DTMAC +·I-微晶物质表面而被浮选至盐水相上,Cd2+被定量浮选,Co2+、Ni2+、Zn2+、Mn2+、Fe3+、Al3+等离子留在水相中而不被浮选,实现了Cd2+与这些离子的定量分离,据此建立了一种微晶吸附体系浮选分离Cd2+的新方法。通过扫描电镜图片确证了DTMAC +·I-微晶物质的产生,探讨了Cd2+的浮选分离机理。方法成功用于合成水样中Cd2+的定量浮选分离,浮选率为95.4%~105.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号