首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is a pebble bed experimental reactor built by the Institute of Nuclear Energy Technology (INET), Tsinghua University. This paper introduces the first critical prediction calculations and the experiments for the HTR-10. The German VSOP neutronics code is used for the prediction calculations of the first loading. The characteristics of pebble-bed high temperature gas-cooled reactors are taken into account, including the double heterogeneity of the fuel element, the buckling feedback of the spectrum calculation, the effect of the mixture of fuel elements and graphite balls, and the correction of the diffusion coefficients in the upper cavity based on transport theory. Also considered are the effects of impurities in the fuel elements, in the graphite balls and in the reflector graphite on the reactivity. The number of fuel elements and graphite balls in the initial core is predicted to provide reference for the first criticality experiment. The critical experiment adopts a method of extrapolating to approach criticality. The first criticality was attained on December 1, 2000. The first criticality experiment shows that the predicted critical number of the fuel elements and graphite balls is in close agreement with the experimental results. Their relative error is less than 1.0%, implying the physical predictions and the results of the criticality experiment are much beyond expectations.  相似文献   

2.
10MW高温气冷实验堆(HTR-10)是球床型反应堆,燃料元件的装卸和循环可不停堆,为了保证其安全运行,必须准确地知道燃料元件的装卸和循环过程可能引起的反应性变化,尤其是向堆芯装料时引入的反应性变化,HTR-10首次临界后对燃料球和石墨球的反应性价值进行了测量,本文介绍了燃料球和石墨球反应性当量刻度的方法,给出了初始装载截芯和空气气氛下的燃料球和石墨球反应性当量实验测量结果。  相似文献   

3.
球床堆卸料管中燃料效应的研究   总被引:1,自引:0,他引:1  
介绍了球床式高温气冷堆卸料管中燃料倒料的模拟方法,并以10MW高温气冷堆为实例,使用CHTRP程序计算和分析了卸料管中燃料对反应堆物理及热工性能的影响,给出了卸料管中的功率分布及温度分布,这对进一步研究反应堆物理和安全分析是很重要的。  相似文献   

4.
10 MW高温气冷实验堆(HTR-10)是我国第一座高温气冷堆。一回路流量变化试验是HTR-10的三个动态特性试验之一,该试验不仅证明了反应堆的功率自调节性能,也为系统分析程序的验证提供了实测数据。基于实际的试验工况,利用THERMIX程序对一回路流量变化试验进行了模拟,分析了反应堆主要参数的变化。关于反应堆功率,计算结果与试验结果符合得很好,证明程序能够满意地再现HTR-10在该试验中的动态特性。试验过程中,燃料元件中心最高温度始终低于1 230℃的温度限值。  相似文献   

5.
堆芯流量分配设计是自然循环反应堆堆芯结构优化的重点内容,对提升堆芯经济性和安全性具有重要意义。基于反应堆闭式并联多通道模型构建了局部最优流量分配计算模型,并对现有的流量分配方案进行分析,针对其局限性,提出了一种基于最佳时区的多目标综合评价法,可实现反应堆全寿期多目标流量分配优化计算;根据所提出的理论,结合TOPSIS综合评价法,以自然循环下最大输出功率、反应堆寿期内出口最大温差以及最大温差随时间变化标准偏差为属性值,开展小型长寿命自然循环铅铋快堆SPALLER-100的堆芯流量分配方案优化研究。研究结果表明,基于运行时间为3182 d功率分布所得SPALLER-100反应堆堆芯流量分配方案最佳,与基于寿期初功率分布所得流量分配方案相比,所得方案堆芯出口最大温差降低30 K,堆芯出口最大温差随时间变化的标准偏差降低41%,反应堆自然循环最大输出功率提高2.35%。   相似文献   

6.
以中国百万千瓦级超临界水冷堆(CSR1000)堆芯为研究对象,建立热工水力计算模型,计算出冷却剂和慢化剂温度分布、堆芯功率分布、燃料组件出口压力及流量分配等参数。计算结果表明,适当增加堆芯内部燃料组件流量比例,可以有利于径向功率展平,内外燃料组件通道出口压降,呈现"N"型变化,增大内部燃料组件的堆芯入口功率,内部组件内的流量分配也将减少,而外部燃料组件通道中的流量将增加,适当调整堆芯入口流量初始分配比例,可以使各通道功率分布展平。  相似文献   

7.
为开展关于核热推进反应堆堆芯的稳态热工水力计算,基于现有针对压水堆的系统分析程序,添加了氢气的物性模型及流动换热和摩擦阻力关系式,并采用公开文献中的数据进行验证。结果表明采用上述模型计算得到的结果与参考值符合较好,二次开发的程序适用于氢气的流动换热计算。针对一种折流式核热推进反应堆堆芯,使用该系统程序建模并计算,得到了堆芯的流量、焓升等分布情况。研究结果表明,对于折流式核热推进反应堆,内外堆芯燃料元件之间的导热会增强堆芯释热不均,对堆芯的稳态热工水力特性有较大影响,堆芯物理方案的设计应结合热工水力方面的计算。本研究可为核热推进系统内氢气流动换热计算提供借鉴。  相似文献   

8.
在球床式高温气冷堆堆芯内,影响石墨球摩擦磨损率的关键条件为载荷与温度。此前,中国辐射防护研究院研究了载荷对石墨球摩擦磨损性能的影响,得到了石墨球磨损率与载荷的关系。本文在此基础上进一步研究了温度对石墨球磨损率的影响,通过拟合得到了石墨球磨损率与石墨球所受载荷、温度之间的关系式,结合HTR-PM高温气冷示范堆内燃料元件所受载荷和温度的分布情况,计算得出石墨球之间摩擦产生的石墨粉尘量约为14.01 g/d(5.1 kg/a)。  相似文献   

9.
高温气冷堆结合磁流体发电是一种高效的空间电源系统,可以满足空间任务对于大功率、高效率的需求,具有广阔的应用前景。本文参考美国普罗米修斯计划中的开放栅格方案,结合磁流体发电需满足的设计条件,提出了一种由三角形布置、217根燃料棒构成的堆芯方案。在通过试验数据确定流动模型后,对该空间堆进行了三维建模,并在考虑气隙结构、燃料棒功率分布及堆内辐射的基础上研究其热工水力特性,重点针对环境温度及外壁面发射率展开了热工参数敏感性分析。计算结果表明,该堆芯热工设计满足材料温度、压降限值等指标要求。冷却剂在燃料区横向流动不明显,不存在复杂涡结构,流动现象相对较为简单。稳态热工计算结果对环境温度的改变并不敏感,但发射率的改变影响相对较大。  相似文献   

10.
10MW高温气冷实验堆(HTR-10)是一座球床堆,由燃料元件装卸系统实现燃料元件的装卸和循环,且不需要停堆,为保证HTR-10的正常运行,燃料元件装卸系统必须安全,可靠,为此,必须对燃料元件装卸系统进行周密,细致的调试试验和验证,本文介绍了燃料元件装卸系统冷调试的主要调试项目,调试方法和调试结果。  相似文献   

11.
In the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) fuel elements move through the core driven by gravity. To reach their design burn-up the fuel elements are re-shuttled five times. This transportation outside the core is mainly achieved pneumatically. Although, adopting the international experience at design and operation of similar systems some key components were improved so that the fuel handling system (FHS) becomes simpler and more reliable. The improved components were tested in full-scale testing facilities. The debugging test and the first loading operation for the FHS indicate that the FHS meets the demands of the HTR-10. In this paper, the functions, design parameters, technological processes, main components and design characteristics of the FHS are described in detail. The flow schemes, design parameters of the full-scale testing facilities and the experimental results are briefly introduced.  相似文献   

12.
堆芯流量分区是实现堆芯出口温度展平的重要手段,合理地分区可以提高反应堆的安全性和经济性。本文将人工智能优化算法与单通道模型进行耦合,构建了反应堆堆芯流量分区计算模型,分别开展遗传算法、差分进化算法、量子遗传算法在反应堆流量分区问题上的收敛性分析。根据所得最优算法,分别以寿期初功率分布、各燃料组件在整个寿期内最大功率为样本数据,基于小型长寿命自然循环铅铋快堆SPALLER -100开展两种不同流量分区方案对比分析。研究结果表明,在3种智能优化算法中,量子遗传算法在反应堆流量分区问题上收敛性最佳,能较快地搜索到最优分区结果;基于寿期初功率分布样本数据所得燃料组件最大出口温度超出反应堆热工安全限值,而基于各燃料组件在整个寿期内最大功率所得燃料组件最大出口温度降低了140 K,且始终保持在热工安全限值之下;SPALLER-100反应堆最佳分区数为5,再增加分区数对提高反应堆热工安全性能影响较小。   相似文献   

13.
The Chinese 10 MW high temperature gas-cooled reactor (HTR-10) attained its first criticality on December 21, 2000. The fabrication of the first fuel for the HTR-10 started in February 2000 at the Institute of Nuclear Energy Technology (INET), Tsinghua University. Up to September 2000, a total of 11 721 spherical fuel elements were successfully produced. The average free uranium fraction of the first fuel-determined by the burn-leach method-was 5.0×10−5. So far, the release rate R/B of the fission gas, measured in the irradiation test, shows that not a single particle in three irradiated spherical fuel elements failed as the results of the irradiation test carried out in Russia. This paper describes the design parameter, the fabrication technology and the performance data of the HTR-10 first fuel, and the production and quality control experiences obtained from the manufacture of the first fuel for the HTR-10.  相似文献   

14.
在液态燃料熔盐堆(Molten salt reactor,MSR)热工水力设计中,为实现堆芯径向功率展平需对堆芯流量分配进行设计,使得堆芯进口流量分布正比于释热量分布,而下腔室结构和流场分布对堆芯流量分配起决定性作用。利用FLUENT软件对堆芯三维流场进行模拟,通过调节下腔室结构和流量分配装置,对下腔室流场分布进行优化,最终实现堆芯流量合理分配。数值模拟结果表明,喇叭状下腔室比椭球形下腔室熔盐通道流量标准差降低4.2%,设置流量分配板熔盐通道流量标准差降低29.2%;改变下腔室结构和设置流量分配装置能够较好调节流量分配和功率分布匹配性,该结果可为液态熔盐堆堆芯优化设计提供依据。  相似文献   

15.
10MW高温气冷堆(HTR-10)在设计寿命内共卸出约9万个乏燃料元件,其放射性裂变产物的活度高达1.0×1016Bq,必须妥善处置。HTR-10乏燃料元件卸在密封和屏蔽的乏燃料罐内,每罐可容纳2000个乏燃料元件。这些罐暂存在反应堆建筑物最底层的乏燃料暂存库内,在库内采取通风冷却。若干年后,通过转运小车运至反应堆大厅竖井下方,再用大厅吊车从竖井吊至地面,最后用卡车运至最终贮存库。  相似文献   

16.
The R&D of spherical fuel elements for the 10 MW high temperature gas-cooled reactor (HTR-10) started in 1986 in China. A process known as cold quasi-isostatic molding was used for manufacturing spherical fuel elements, and about 20,540 spherical fuel elements were produced in 2000 and 2001. Fabrication technology and graphite matrix materials were investigated and optimized. Cold properties of the spherical fuel elements met the design specifications. The mean free uranium fraction of 44 batches was 4.57 × 10−5. In-pile irradiation test results showed that irradiation did not lead to apparent change in linear dimensional, geometrical density, porosity and strength of matrix graphite samples. No cracks and blisters were observed in spherical fuel elements. This indicated that matrix graphite and spherical fuel elements of HTR-10 met the requirement of design specifications.  相似文献   

17.
《Annals of Nuclear Energy》2004,31(11):1265-1273
Pakistan Research Reactor (PARR-1) was converted from Highly Enriched Uranium (HEU) to Low Enriched Uranium (LEU) fuel, in 1992. The reactor is running successfully with an upgraded power level of 10 MW. In order to save money on the purchase of costly fresh LEU fuel elements, it is being thought to use some of the less burnt HEU spent fuel elements along with the present LEU fuel elements. In the present study steady-state thermal hydraulics of a proposed mixed fuel core (see Fig. 2) has been carried out. Results show that the proposed core, comprising of 24 LEU and 5 HEU standard fuel elements, with 4 LEU and one HEU control fuel elements, can be safely operated at a power level of 9.86 MW without compromising on safety. Standard computer codes and correlations were employed to compute various parameters, which include: coolant velocity distribution in the core; critical velocity; pressure drop; saturation temperature; temperature distribution in the core and margins to Onset of Nucleate Boiling (ONB), Onset of Flow Instability (OFI) and Departure from Nucleate Boiling (DNB).  相似文献   

18.
Safety demonstration tests were conducted on the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) to verify the inherent safety characteristics of modular High Temperature Gas-cooled Reactors (HTGRs) as well as to obtain the transient data of reactor core and primary cooling system for validation of HTGR safety analysis models and codes. As one of these safety demonstration tests, a simulated anticipated transient without scram (ATWS) test called loss of forced cooling by tripping the helium circulator without reactor scram was carried out at 3 MW power level on October 15, 2003. This paper simulates and analyzes the power transient and the thermal response of the reactor during the test by using the THERMIX code. The analytical results are compared with the test data for validation of the code.Owing to the negative temperature coefficient of reactivity, the reactor undergoes a self-shut down after the stop of the helium circulator; the subsequent phenomena such as the recriticality and power oscillations are also studied. During the test a natural circulation loop of helium is established in the core and the other coolant channels and its consequent thermal response such as the temperature redistribution is investigated. In addition, temperatures of the measuring points in the reactor internals are calculated and compared with the measured values. Satisfactory agreements obtained from the comparison demonstrate the basic applicability and reasonability of the THERMIX code for simulating and analyzing the helium circulator trip ATWS test. With respect to the safety features of the HTR-10, it is of most importance that the maximum fuel center temperature during the test is always lower than 1600 °C which is the limited value for the HTGR.  相似文献   

19.
HTR-10一回路冷却剂中氚活度的测量   总被引:1,自引:0,他引:1  
详细介绍了测量10 MW高温气冷试验堆一回路冷却剂中氚活度的方法。设计适用于HTR-10特点的氚收集装置,先后两次收集冷却剂中的氚,制成液样进而用液闪法进行测量,并根据试验结果推算HTR-10一回路冷却剂中氚的总活度。针对两次试验结果进行分析并与理论计算值相比较,验证了理论计算的正确性并由此进一步证明高温气冷堆的燃料包覆颗粒对放射性产物的阻挡作用完好,反应堆对环境的氚释放完全在设计要求范围内,符合相应的国家标准。  相似文献   

20.
设计了10MW高温气冷实验堆初装堆的两个方案(方案1为“普通燃料球+石墨球”,方案2为“普通燃料球+天然铀球”),采用高温气冷堆物理设计程序包VSOP对其进行分析计算,结果表明:两方案均能实现比较平稳地向平衡态过渡.就过渡过程中的单球最大功率、最大燃耗等参数而言,方案2优于方案1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号