首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
酚醛树脂包覆石墨作为锂离子二次电池炭负极材料的研究   总被引:1,自引:0,他引:1  
为改善石墨的充放电特性及与电解质相容性,以酚醛树脂包覆天然鳞片石墨,在惰性气氛下以不同的炭化条件对包覆材料进行炭化处理,将所制备的复合材料作为锂离子二次电池的负极,以金属锂片作为对电极,在1mol/L LiPE6/(EC DEC)(1:1)电解液中考察了其恒电流充放电特性。同时,对部分复合材料进行了元素组成,真密度,X射线衍射分析。  相似文献   

2.
低温处理中间相沥青炭微球的充放电性能研究   总被引:1,自引:0,他引:1  
研究了在500-1000℃下停留不同时间低温炭化处理的中间相沥青炭微球(MCMBs)的充放电性能,并与其XRD结构相关联。研究表明:在500-1000℃停留4h炭化处理的中间相炭微球中,700℃炭化处理的MCMBs充放电性能最好,充放电容量最高,不可逆容量损失最小;在700℃炭化温度下停留时间的延长有利于MCMBs循环性能的提高。  相似文献   

3.
提高锂离子电池炭负极材料性能的表面处理方法   总被引:7,自引:0,他引:7  
综述了锂离子电池炭负极材料表面的研究和开发现状。着重就炭负极材料表面处理中的包覆、成膜和化学方法进行了归纳的引述。  相似文献   

4.
锂离子电池因其质量轻,能量密度高等优良性能,是近几年来电化学界研究的热点。但锂离子电池用石墨作负极还存在一些问题,需要对石墨改性处理。本文介绍了石墨的一种改性方法:沥青包覆石墨法,可有效降低石墨的比表面积,从而大幅度提高了石墨负极材料的首次可逆容量和库仑效率,改善电池的循环性能等。  相似文献   

5.
以纳米硅、石墨和马铃薯淀粉为原料制备硅-石墨/炭复合负极材料,探讨复合材料的制备工艺对其电化学性能的影响,并采用扫描电镜和X-射线衍射法对材料的颗粒形貌和微晶结构进行表征。研究表明:当复合材料中m(Si)/m(graphite)为1∶4,球磨时间为10 h时,复合材料经20次循环后其可逆容量仍为466 mA·h/g,显示出良好的电化学性能,进一步分析表明纳米硅和石墨均对复合材料的可逆容量做出贡献,而且复合材料中含量较高的石墨的颗粒形貌和微晶结构对其电化学性能起关键性作用。  相似文献   

6.
通过高温固相法在硬炭表面包覆沥青热解炭,制备锂离子电池负极材料。SEM测试显示,硬炭包覆上沥青热解炭后表面形貌发生了明显变化。由例得到,硬炭表面包覆的沥青热解炭的平均厚度为300nm。当硬炭表面包覆上沥青热解炭后(硬炭与沥青的质量比为2:1),首次库仑效率由55%提高到70%,可逆容量也有所提高。研究发现,硬炭在高倍率下的容量和循环稳定性比石墨好。  相似文献   

7.
杨瑞枝  徐仲榆 《炭素》1999,(1):43-48
以酚醛树脂包覆天然鳞片石墨后进行热处理,将所制备的不同热解炭包覆层厚度和不同最高热处理温度(HTTmax)的复合材料作为锂离子二次电池的负极,以金属锂片作为对电极,在1M LiPF6/EC+DEC(1:1)电解液中考察了其恒电流充、放电特性和粉末微电极循环伏安特性。  相似文献   

8.
以石油基高软化点沥青为包覆剂,通过液相包覆改性天然石墨材料,分别采用氮气吸附、扫描电子显微镜、X射线衍射和电池性能测试等对沥青包覆石墨材料进行表征分析。结果表明,10%沥青包覆比例可以在天然石墨表面形成完整的包覆层,降低比表面积,改善天然石墨材料的循环性能和倍率性能,0.5C下循环150次容量保持率由81.05%提高到94.27%。  相似文献   

9.
董怡辰  王振波  秦华 《炭素》2011,(1):16-20
概述了碳材料包覆对动力锂离子电池正极材料LiFePO4、LiNi0.5Mn1.5O4和Li[Nil/3Co1/3Mn1/3】O2电化学性能的影响,综述了不同碳源炭化后形成的碳的特性及对各种电极材料性能的影响,总结了碳包覆动力锂离子电池正极材料的发展方向。  相似文献   

10.
将天然石墨、酚醛树脂和微米级硅粉进行球磨处理制备复合材料前驱物,再于N2气氛下700℃炭化得到硅/石墨/炭(Si/G/C)复合电极材料,采用X射线衍射仪、扫描电镜和透射电镜及电化学循环充放电对其形貌、结构及其电化学性能进行表征.结果表明,Si/G/C作为锂离子电池负极材料具有高于900 mA·h/g的可逆比容量,40次循环后保持在550 mA·h/g.对电极进行热处理后,其循环性能显著提高,40次循环后比容量保持在700 mA· h/g.扫描电镜分析结果显示,热处理后集流体上电极材料分布更均匀,因涂抹不均形成的空隙不复存在.热处理后电极结构更致密、内部黏结强度增大使其结构稳定性明显提升,是电极循环性能提高的主要原因.  相似文献   

11.
树脂包覆针状焦的电化学性能研究   总被引:1,自引:0,他引:1  
以针状焦作为核心,外层包覆酚醛树脂的复合材料作为锂离子电池的负极材料,通过对比不同包覆量的复合材料的表面形貌、结构及其电化学性能的研究,得出结论:树脂对于针状焦具有较好的包覆作用,有利于锂离子的嵌入/脱出,改善了电化学性能。  相似文献   

12.
石墨添加对中间相炭微球电化学性能的影响   总被引:4,自引:0,他引:4  
赵海  胡成秋 《炭素》2005,(2):30-34
以煤焦油沥青为原料,采用聚合法制备中间相炭微球。研究了不同天然鳞片石墨添加量在相同热处理条件下得到的中间相炭微球作为锂离子电池炭负极材料的电化学性能。研究结果表明,石墨的添加使中间相炭微球内部结构变的复杂,X衍射显示石墨的添加降低了炭微球的石墨化度和晶形尺寸。随石墨添加量的增加,电池的首次充放电容量和效率有所减小,三次循环后充放电效率趋于一致。  相似文献   

13.
酚醛树脂对均相成核的中间相炭微球生成的作用   总被引:8,自引:4,他引:8  
在QI含量很低的沥青中加入适量的酚醛树脂,可以改变沥青生成中间相炭微球的热缩聚反应,进而改变中间相炭微球的形貌与微观结构。酚醛树脂在沥青稠环芳烃分子热缩聚过程的初期形成共晶,在后期充当炭微球的交联剂的作用,使中间相炭微球的收率增加,尺寸变大,并影响了中间相炭微球的织构,红外光谱分析表明酚醛树脂已参与了中间相炭微球的形成;偏光显微镜、扫描电镜形象地表征出了中间相炭微球的微观织构以及酚醛树脂的作用。  相似文献   

14.
蒙脱土改性酚醛树脂复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
为提高酚醛树脂(PF)的热稳定性,利用原位插层法制备了PF/蒙脱土(MMT)、PF/有机化蒙脱土(OMMT)纳米复合材料,并比较了PF、PF/OMMT或PF/MMT经高温热处理后的力学性能和导电性能.研究表明,与PF复合后,OMMT和MMT都形成了剥离型的片层结构.与PF/OMMT复合材料相比,PF/MMT的质量保持率...  相似文献   

15.
剑麻纤维/酚醛树脂复合材料研究   总被引:20,自引:5,他引:20  
本文采用碱处理、硅烷偶联剂处理、化学接枝和热处理等物理化学方法,对剑麻纤维进行改性。研究了改性后短剑麻纤维/酚醛树脂复合材料的弯曲性能、无缺口冲击强度和布氏硬度,借助扫描电子显微镜观察了复合材料的弯曲断口形貌,并研究了剑麻纤维的不同处理方法对复合材料耐水浸泡性的影响。结果表明:剑麻纤维经硅烷偶联剂处理后,能有效改善刚性的剑麻纤维与脆性的酚醛树脂基体之间的粘结,从而提高了复合材料的综合力学性能,剑麻  相似文献   

16.
17.
通过浸渍的方法在天然鳞片石墨的表面包覆上一层酚醛树脂,然后在N2保护下于600℃-1000℃炭化1h制得改性石墨。应用TG-DTA法研究了酚醛树脂的热失重行为;SEM,XRD及恒电流充放电等技术研究了所得改性石墨的表面物理形态、微晶结构及恒电流充放电性能。结果表明包覆在石墨表面的具有无定形结构的酚醛树脂炭能够有效阻止石墨在充放电过程中发生层状剥落,从而提高了石墨的循环稳定性。  相似文献   

18.
利用Li-C实验电池,得到了微晶石墨(无定形石墨)作阳极材料时,其成分、粒度对锂离子电池电化学性能的影响。结果表明,微晶石墨在0.7V左右的不可逆容量与石墨颗粒的粒度和纯度无关;随着杂质含量的减少,可逆容量略有增加,但不可逆插入容量明显减少;杂质的成分与含量对微晶石墨的循环性能的影响不大;其可逆容量与不可逆插入容量都随着石墨粒度减小而增大;颗粒大小对其循环性能的影响不大。  相似文献   

19.
体型酚醛树脂复合活性炭电极的制备及性能研究   总被引:2,自引:0,他引:2  
刘玲  孟庆函 《炭素技术》2005,24(2):9-11
采用添加体型酚醛树脂复合高比表面积活性炭,制备用于超级电容器的电极材料。通过低温氮气吸附考察了添加体型酚醛树脂对活性炭孔容和孔径分布的影响,实验表明复合活性炭的孔容和孔径加宽,有中孔存在。通过比较活性炭电极和复合电极的电化学性能,说明添加体型酚醛树脂可以显著降低原料成本,不用固化而提高了其电化学性能。  相似文献   

20.
主要围绕热敏CTP版材用酚醛树脂的合成及成像性能进行了研究。首先,2402树脂用苯酚、甲醛进行改性,得到碱溶性好、成像性能优的成膜树脂。其二,利用邻甲酚、对甲酚、对叔丁基酚及其混合物在不同催化剂下,合成主链醚化的酚醛树脂或末端带羟甲基的酚醛树脂。主链醚化树脂用于阳图热敏CTP版材具有酸解活性的成膜树脂;高分子链末端带有羟甲基,在预烘过程中,羟甲基可发生交联固化作用,弱碱显影得到阴图图像,其成像性能较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号