首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
利用计算流体动力学(CFD)对焦炉煤气燃烧室内的燃烧特性进行数值模拟,分析了燃料流速对燃烧室内温度场及各组分质量分数的影响。研究结果表明:燃料流速对燃烧室内温度场及各组分质量分数的分布影响较大,适宜的燃料流速能提高焦炉煤气的燃烧效率。在空气流速一定的情况下,随着燃料流速的增大,炉内氧气的质量分数减小,甲烷、一氧化碳、二氧化碳、水蒸汽的质量分数增大。当空气速度为0.5 m/s,燃料速度为60 m/s时,焦炉煤气燃烧最优。  相似文献   

2.
《广州化工》2021,49(10)
全氧燃烧(Oxy-Fuel Combustion)技术是"氧+燃料"的燃烧方式,具有节能环保的功效,在玻璃制品生产行业得到广泛应用。但常见的全氧燃烧玻璃窑炉为获得满足压力的氧气需加装氧气压缩机,从而会带来运行成本、安全风险等问题。本研究提出了一种双喷嘴玻璃窑炉,可有效解决氧气压力需要压缩的问题、降低生产成本。第一喷嘴前天然气压力为150~450 kPa,天然气流速为180~320 m/s;第二喷嘴前压力为1~5 kPa,属于超低压,明显降低了第二喷嘴对氧气压力的需求,出口处氧气流速为40~160 m/s。为了生产一体化,将玻璃窑炉、成型组件、抛光组件以及输送带,顺序连接形成一套完整的玻璃制品生产装置,有效提高玻璃制品的成品率。  相似文献   

3.
1装置概况河南煤业化工集团中原大化公司500 kt/a甲醇项目空分装置使用的是杭氧股份公司设计的KDON-52000/61100型空分设备。其中冷箱是整套装置的核心,包括高低压板式换热单元、精馏单元,主要作用是将空气降到饱和温度,然后在精馏塔进行热质交换,将空气分离为氧气、氮气和氩气。装置设计产氧气52 000 m3/h(纯度99.6%)、氮气61 100 m3/h(O2含量10×10-6)、液氩1 600 m3/h(O2含量1×10-6,N2含量2×10-6)。  相似文献   

4.
CA1980,Vol.92,No.16,131513s.对硫磺在空气或含氧气体中于压力下燃烧来制二氧化硫的方法(连续两段冷却和洗涤气体)作了如下改进:1.用10~100%的过剩空气或含氧气体燃烧硫磺;2.首先将气体冷却到洗涤温度115~158℃,然后冷却到30~35℃。从冶炼气体中制取元素硫  相似文献   

5.
针对乙烯-空气爆燃火焰在弯管阻火器中的传播与淬熄过程进行了数值模拟研究,采用了标准模型来描述爆炸中出现的湍流,选用EBU-Arrhenius燃烧模型来描述燃烧过程中湍流燃烧速率的变化,采用PISO算法对速度和压力耦合方程组进行解耦。模拟结果显示,在经过弯管时,火焰传播振荡加速,速度最高值达到43m/s。随后火焰传播速度逐渐减小,在到达阻火单元附近时产生了淬熄现象,火焰传播速度趋近于0 m/s。  相似文献   

6.
《煤化工》2015,(4):56-60
针对氧热法电石合成的电石生成吸热和碳燃烧放热耦合特点,构思并研究了适用该过程的两相气流床反应器。采用空气-氯化聚氯乙烯(CPVC)-磷酸钙颗粒[Ca3(PO4)2]模拟物系,实测了不同喷射气速、固体颗粒进料速度情况下气流床床层内局部气速的轴径向分布、固体颗粒浓度的轴径向分布。结果表明:床层局部气速沿反应器轴向高度的增大而减小,并在轴向位置H=0.90 m时达到最小;在同一喷射气速下,床层局部气速沿反应器径向分布随着无因次半径r/R的增加而减小;当喷射气速Ug在68.80 m/s到98.29 m/s之间变化时,固体颗粒浓度在床层轴向位置上先增大后减小,并且其值在H=0.40 m时最大;同一进料速度下,在反应区固体颗粒浓度从床层中心到床层壁面处一直在增大。上述结果表明,电石生成反应与燃烧供热反应原位耦合于气流床中是可行的。  相似文献   

7.
以聚己内酰胺(PA 6)和聚对苯二甲酸乙二醇酯(PET)切片为原料,使用双组分复合纺丝机,利用复合中空纺丝组件进行复合纺丝制得PA 6/PET复合中空纤维,通过Poly Flow软件模拟,确定了喷丝板微孔尺寸,并对复合纺丝工艺进行了研究。结果表明:纺丝组件中喷丝板的微孔区间隙为0.08 mm,可以满足PA 6/PET皮芯复合中空纤维的纺丝要求;PA 6/PET皮芯复合中空纤维的中空度随着PA 6/PET流量比和吹风速度的增大而增大;随着PA 6/PET泵供量、纺丝温度和吹风起始高度的增大而减小;最佳纺丝工艺为吹风速度0.55 m/s,吹风起始高度100 mm,纺丝温度284℃,PA 6及PET单孔体积流量分别为2.4×10~(-8)及1.2×10~(-8)m~3/s,泵供量为3.6×10~(-8)m~3/s,卷绕速度3 000 m/min,在此条件下制得的PA 6/PET皮芯复合中空纤维的断裂强度为1.41 cN/dtex,断裂伸长率为120.50%。  相似文献   

8.
利用热天平研究了煤在不同的氧气浓度条件下的燃烧行为,利用中空纤维膜组件进行了氧气富集试验,研究了操作工况对富氧空气通量和氧气浓度的影响。结果表明随着氧气浓度的增加,煤的着火温度及燃烬温度提前,燃烧速度增大,富氧空气的体积分数为30%左右较为合适。用于燃烧的富氧工艺的温度为20 ℃,压力为0.9 MPa,回收率应控制在90%左右。  相似文献   

9.
实验的三相循环流化床以玻璃珠 (dp = 0.48 mm, ρs = 2460 kg(m(3) 和苯乙烯颗粒 (dp = 1.45mm, ρs = 1264 kg(m(3)为固相,空气为气相,水、0.05%、0.20% (mass) CMCS (羧甲基纤维素钠)水溶液为液相.实验研究了液体粘度、表观液体速度、表观气体速度、辅助液体速度及颗粒密度对颗粒循环速度的影响.随着液体粘度的增加,颗粒循环速度增加;随着表观液体速度和辅助液体速度增加,颗粒循环速度都增加;随着表观气体速度的增加,颗粒循环速度减小.低密度颗粒系统同高密度颗粒系统相比,低密度颗粒系统能提前从三相传统流型进入三相循环流型.实验还研究了液体粘度对低密度颗粒的起始液体速度和过渡液体速度的影响,为得到三相循环流化床的流型图提供了可靠的依据.  相似文献   

10.
为了研究富氧燃烧气氛下煤在流化床中燃烧SO2排放特性,利用小型流化床反应器,以褐煤和无烟煤为试验原料,分别在21%、29%、42%和56%O2/CO2气氛下进行了燃烧试验,探究了燃烧气氛对流化床煤燃烧中SO2排放的影响。结果表明,在O2/CO2气氛下,随着氧气浓度的提高,2种不同类型的煤在770℃燃烧后,SO2排放量逐渐升高,褐煤SO2排放量从925×10-6增加到6 526×10-6,无烟煤的SO2排放量从1 310×10-6增加到5 357×10-6。与无烟煤相比,褐煤升高趋势更为明显。氧气浓度对SO2析出速率的影响显著,在15 s甚至更短时间使得SO2析出达到更高的峰值。氧气浓度从21%增至29%时,转化S显著增加,之后随着氧浓度增加,转化S增长趋缓。从机理上解释,高氧浓度为硫化物析出提供了更充足的氧气,促进了SO2的生成,同时高氧浓度加速了挥发分和焦炭的燃烧速度,改善了煤的燃烧和燃尽特性。通过增强煤本身的自热效应,煤燃烧过程加快,促进煤中硫元素的释放,SO2排放量也相应增加。随着氧浓度的增加,褐煤的CO保持在相对稳定的水平,说明氧浓度的变化对此影响较小。褐煤挥发分高,容易出现停留时间不足,导致不充分燃烧,烟气中含有一定量CO等气体。SO2的排放除了与氧气浓度有关外,主要还与煤中含硫量有关,通常含硫量越高,煤燃烧产生的SO2越多。由于试验煤种含硫量均较高,因此SO2排放量处于较高水平,在富氧燃烧过程中,针对含硫量较高的煤种,应充分考虑SO2排放控制问题。灰分也会影响SO2排放量,SiO2和Al2O3对SO2转化为SO3的影响较小,而CaO和MgO作用明显,煤灰中Fe2O3、K2O等含量对此转化过程也有一定影响。  相似文献   

11.
随着我国经济的飞速发展,作为重要基础材料的水泥产品需求量极大且趋于稳定。水泥生产过程中的NOx排放与燃煤火电厂和汽车尾气产生的NOx排放已成为空气污染的主要来源,而分解炉是降低水泥生产工艺中NOx排放的有效设备。笔者在引入高温烟气的模拟分解炉内进行空气分级燃烧试验,研究配风位置、配风比例以及石灰石/煤比例对分解炉内燃烧和NOx排放特性的影响规律。试验稳定过程中,高温烟气发生装置的给煤量和配风量保持不变。此时,高温烟气发生装置的时间平均温度为911℃,其产生的高温烟气温度稳定在750℃左右,高温烟气中NOx主要以NO和N2O的形式存在,其浓度分别为261.49×10^-6和12.96×10^-6。该股高温烟气将模拟实际回转窑产生的烟气进入分解炉内。在分解炉的上部区域(距离顶部0~2 000 mm区域)的温度为800~1 000℃,与实际分解炉运行温度一致,排放烟气中NOx主要以NO和N2O形式存在。随着中间配风位置的下移,煤粉燃烧放热区域下移,而顶部区域的石灰石吸热量变化较小,则原有热量平衡被打破且原有吸热量高于现有放热量,导致顶部区域内燃烧温度降低。此时,还原气氛中煤粉燃烧和石灰石分解反应时间均变长,导致NOx的还原反应更加充分。但石灰石分解产生的氧化钙(CaO)作为中间产物会促进NO的生成反应,其反应时间增加也促进了NO的生成;另一方面,石灰石作为催化剂参与焦炭和挥发分还原NO的反应过程,分解炉顶部区域的温度下降使得该还原反应变弱。综上,NO的最终排放浓度是以上反应的综合结果。随着配风位置的下移,该变化对NO的生成作用更加明显,故NO的排放浓度逐渐升高。当一级风量与二级风量的配风比例降低时,分解炉上部区域的煤粉燃烧份额减少和石灰石分解量降低,而分解炉下部区域的煤粉燃烧份额增加和未分解的石灰石份额增加,但石灰石的吸热增加量高于燃烧增加份额的放热量,因此分解炉内整体温度均降低。分解炉内NO浓度是由石灰石催化的氧化过程和还原过程综合决定的。一级风量变小时,尾部CO浓度随之增加,烟气中NO浓度呈现降低的趋势。当石灰石/煤比例增加时,分解炉内沿程温度逐渐下降。随着石灰石给粉量增加,分解炉内石灰石受热分解产生的CaO浓度增加,CaO催化NO还原反应更剧烈,从而NO浓度逐渐降低。而石灰石给粉量增加和分解炉温度降低的过程导致尾部的CO浓度升高。  相似文献   

12.
在内热式低温煤干馏中,引入富氧燃烧,同时提高煤气当量比,是在维持炉内温度分布基本不变的前提下提高煤气质量的有效途径。通过不同富氧比及不同尺寸烧嘴下的大当量比煤气/富氧燃烧实验结合数值模拟分析,探究了富氧低温干馏中的内热火焰温度分布特性及其受工艺条件和烧嘴尺寸的影响。结果表明:增大富氧比的同时增大燃料当量比可以维持平均火焰温度与空气助燃工况基本一致,但火焰锋面温度受局部当量比及流动条件影响;减小燃料及氧化剂射流的初始速度差,可以减缓组分混合、延长火焰并降低火焰锋面温度;煤气中三种气体按参与反应的速率快慢排序依次为氢气、一氧化碳、甲烷,随着燃烧反应进入湍流混合速率控制模式,组分间的选择性燃烧特征相对减弱。  相似文献   

13.
为抑制褐煤堆放时发生自燃与煤粉爆炸,利用自燃装置试验台和煤粉爆炸试验台,对褐煤及其干燥到不同水分的干燥煤进行试验研究,分析其自燃特性和爆炸特性。结果表明,对于自燃特性而言,褐煤水分减少10%,耗氧速度增加约0.17%/min,粒径减小一个等级,耗氧速度增加约0.11%/min;对于爆炸特性而言,褐煤水分减少5%,平均煤粉爆炸下限质量浓度约降低0.015 kg/m~3,温度每升高10℃,平均煤粉爆炸下限质量浓度降低约0.03 kg/m~3;总体而言,随着干燥程度的加深,褐煤自燃、爆炸特性均增强,危险性增加。  相似文献   

14.
双锥煤粉燃烧室在小容量工业锅炉中广泛采用水冷却方式,但随着市场对高容量锅炉需求的增加,双锥燃烧室体积增大、数量增多,如仍采用水冷却的方式将导致安装困难、水系统复杂等问题,亟需开发新的冷却方式。空气冷却形式具有结构简单、预热后的空气可以增加煤粉的着火稳定性等优点,需要考察其首次应用于双锥煤粉燃烧室中的效果。为了确定空气冷却式燃烧室燃烧和壁面冷却情况,采用数值模拟技术对14 MW工业锅炉燃烧室和炉膛进行三维建模,得到50%和100%两种负荷下不同内外二次风配风比例下燃烧室内部燃烧情况、金属壁面温度、出口火焰形状和炉膛充满度。结果表明:控制总空气过量系数不变,随着内二次风比例的逐渐增加,燃烧室内的平均温度逐渐降低;50%负荷下金属壁面温度随二次风比例的增加逐渐降低,100%负荷下金属壁面温度先降低后升高,这是内二次风助燃燃烧和外二次风的冷却共同作用的结果。随着内二次风比例的增加,金属壁面的高温区域逐渐后移,集中于后锥出口区域;在50%负荷下内二次风量占总空气量比例为0.4时,金属壁面具有最高温度930 K,100%负荷下内二次风量占总空气量比例为0.2时,壁面金属最高温度835K,2个最高温度均出现在后锥收缩段,据最高温度推荐壁面材料选取0Cr18Ni9,2种负荷下最高温度出现时燃烧室内的内二次风配风量为2 600 Nm3/h,应尽量使内二次风远离此配风量;50%负荷下燃烧室平均温度、金属壁面平均温度及最高温度均高于100%负荷,是空气冷却结构需要重点考察的工况。随着内二次风比例的逐渐增加,火焰长度先增加后减小,当内二次风过小时,出口气速较小,外二次风具有向中心的速度分量,火焰主要集中在炉膛前部。随着内二次风比例的增加,出口速度增大,火焰变长变细。但随着比例的继续增加,外二次风的轴向速度变小,出口火焰的旋流强度完全由二次风决定,出口旋流强度的增大导致了火焰的变短变粗,在2种负荷下,火焰长度较长时,内二次风比例为0.4~0.5。内外二次风比例为0.5∶0.5时,燃烧室内燃烧情况和壁面温度均匀稳定,火焰在炉膛内的充满度最好,是2个考察负荷下均较适合的运行参数。  相似文献   

15.
障碍物阻塞率梯度对甲烷爆炸特性影响研究   总被引:1,自引:0,他引:1  
通过自主设计并搭建小型实验平台,研究障碍物阻塞率梯度依次为0、0.05、0.1、0.15时,甲烷火焰传播过程的火焰结构变化、火焰前锋动力学以及压力演变。结果表明:阻塞率梯度为0和0.05的工况,经过障碍物后的火焰前锋会由模糊逐渐变得清晰,随后火焰前锋会向燃烧区凹陷;而阻塞率梯度为0.1和0.15工况的火焰在经过障碍物后,前端始终模糊,随后湍流燃烧加剧,迅速在整个管道爆燃,并无火焰前锋凹陷现象。阻塞率梯度对火焰瞬时速度影响较大,而对平均速度并无太大影响。随着阻塞率梯度从0增大到0.15,最大火焰速度会明显提升,而平均火焰速度却近似一致。此外,高阻塞率梯度的障碍物组有利于压力积聚,随着阻塞率梯度的增大,峰值超压也呈现规律性的增大,达到峰值超压所需的时间也相应延长。  相似文献   

16.
在我国目前能源结构中,化石能源尤其是煤炭资源占比很高,造成了极大的环境压力。抗生素发酵药渣为近年来产量迅速升高的固体废弃物,也是一种生物质燃料资源,但目前对药渣的能源化利用研究较少。以CH4等气体来模拟药渣可燃成分,利用Chemkin模拟软件中的PFR反应器构建了药渣在O2/CO2气氛下氧气分级燃烧及非分级燃烧模型,对2种情况下NOx生成特性进行了模拟研究,探求了氧气分级及非分级燃烧时各种因素的影响,并利用生成速率分析法和敏感性分析法对结果进行了反应机理分析。研究结果表明,在氧气非分级条件下,NOx转化率随燃烧温度升高先升高后降低,在1500℃左右达到峰值;NOx转化率随过量氧气系数增加而升高,在过量氧气系数由0.9增至1.1时,增幅显著。在氧气分级条件下,主燃区燃烧温度对NOx转化率的影响较为复杂;NOx转化率随燃尽风率增加先降低后升高,随燃尽风位置推后降低。氧气分级条件下,还原气氛促进了NOx中N向其他组分转化,能够明显降低NOx生成。当燃烧温度低于1500℃,燃尽风率为0.35左右时,NOx转化率最低。首次对药渣在O2/CO2气氛下的燃烧进行了反应动力学模拟研究,探求了各种因素的影响,为实现药渣能源化利用提供了指导。  相似文献   

17.
针对一实际尺寸的回转窑建立模型,分别进行了空气助燃(21% O2)和二次风富氧(23% O2)燃烧的数值模拟研究。结果表明,二次风富氧后,高温区覆盖形状没有明显变化,仍呈“棒槌状”;在回转窑前端,煤粉挥发分与焦炭燃烧速度加快,整体温度有所提升,最高温度由2386 K增至2427 K,壁面所接收的辐射量得到了提升;但NOx的生成量也大幅度提高,其中出口处NOx由247 mg/m3增至367 mg/m3。考虑到制氧成本问题及NOx排放问题,在二次风中进行富氧燃烧的总体效果不够理想。  相似文献   

18.
Particle holdup and the average residence time in the cyclone of a Circulating Fluidized Bed (CFB) boiler are important information for describing events post‐combustion in the cyclone that often lead to a noticeable increase in the temperature of the flue gas. The existing results for the variation of particle average residence time with fluidizing gas velocity are contradictory since they were obtained under different operation conditions. A cold CFB apparatus made of plexiglass was established with a riser of 5 m in height and 0.2 m in diameter and equipped with a standard Lapple cyclone. The particle holdup was directly measured by the mass in the cyclone when the system was shut down. The solid concentration at the cyclone inlet was kept in the range generally used in CFB boilers. The experimental results showed that the particle holdup in the cyclone was equal to ca. 10–40 % of the corresponding bed material in the riser and that it increases monotonously with both the fluidizing gas velocity and the initial static bed height, and approximately linearly with the solid circulation rate. In addition, within the experimental conditions, the cyclone pressure drop increases monotonously with particle holdup. It was found that the average residence time of the particles either increased or decreased linearly with the fluidizing gas velocity, depending on the initial static bed height. Nevertheless, both variation rates were very small. In a view of engineering applications, the average residence time of the particles in the cyclone is insignificantly affected by the fluidizing gas velocity, initial bed inventory and solid circulation rate, within the range of experimental conditions examined.  相似文献   

19.
窄通道杆状发射药内孔燃气流动数值模拟   总被引:1,自引:0,他引:1  
运用合理的简化假设,建立杆状发射药内孔通道燃气流动模型,利用Fluent软件求解器对长径比为40的某一特定单孔杆状发射药燃气在内孔的流动过程进行了数值模拟,在给定初始压力和温度的条件下模拟内孔燃气的速度分布及压力分布,并进行分析。结果表明,径向由孔中心到孔壁,燃气流速逐渐减小,压力逐渐增大;轴向燃气流速先逐渐减小,压力先逐渐增大,在10mm处突然形成速度和压力的震荡波,并随时间沿轴向传递,5ms后速度趋于平稳波动,压力整体保持波动并持续上升,但各点压力最终都保持稳定。  相似文献   

20.
Fuxing Yi  Debo Li  Shuqiang Lu  Kun Luo 《Fuel》2011,90(4):1522-1528
Seven carbon particle diameters, ranging from 0.006 to 16 mm; three air temperatures, varying from 1000 to 1800 K; four ambient air velocities, namely, 0, 0.5, 5, and 50 m/s respectively, are selected to study carbon combustion numerically. Three-dimensional time-dependent numerical procedure is employed. The carbon particle is situated in the center of the computational domain and remained at rest. A uniform computational grid which is eight times larger than the original particle diameter in every coordinate axis is adopted. Three carbon combustion regimes, namely kinetic-controlled, kinetic-diffusion-controlled, and diffusion-controlled, are all observed. To analyze these carbon combustion regimes quantitatively, the kinetic-controlled carbon combustion is defined as that the minimum oxygen concentration at the carbon surface is greater than 90% of the ambient oxygen fraction solving with single-film model; the diffusion-controlled carbon combustion is defined as the minimum oxygen concentration on the carbon surface is less than 10% of the ambient oxygen fraction solving with single-film model too. Other ranges are defined as kinetic-diffusion-controlled carbon combustion. Two quantitative curves, one is to distinguish the kinetic-controlled and kinetic-diffusion-controlled carbon combustion, the other is to distinguish the kinetic-diffusion-controlled and diffusion-controlled carbon combustion, are obtained. The carbon burn-off time is also studied in this paper; the results show that when carbon particle diameters are less than 0.24 mm and the corresponding air temperature is chose 1400 K, the carbon combustion regimes are closer to kinetic-controlled. Another discovery is that higher relative air velocity does not always give rise to less burn-off time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号