首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
倾斜管内上升泡状流界面参数分布特性实验研究   总被引:2,自引:2,他引:0  
采用双头光纤探针对倾斜圆管内空气-水两相泡状流界面参数分布特性进行了实验研究,包括局部空泡份额、气泡通过频率、界面面积浓度及气泡当量直径径向分布特性。实验段内径为50 mm,液相表观速度为0.144 m/s,气相表观速度为0~0.054 m/s。结果表明倾斜管内向上泡状流气泡明显向上壁面聚集。局部界面浓度、空泡份额及气泡通过频率径向分布相似。倾斜条件下局部界面参数分布下壁面附近峰值相对于竖直状态被削弱甚至消失,上壁面附近峰值被加强,中间区域从下壁面往上逐渐增大,且随倾斜角度的增加变化更加剧烈。气泡等价直径随径向位置、气相速度及倾斜角度的不同无明显变化,气泡聚合和破碎现象较少发生。通过气泡受力分析解释了倾斜对泡状流局部界面参数分布的影响机理。  相似文献   

2.
弹状流的液弹部分受气弹尾部影响,其水力特性参数沿流动方向存在分区的不一致性。本文对竖直窄矩形通道中弹状流液弹内参数的分布特性进行了研究。结果表明:液弹内气泡在近壁面附近所受径向力较为平衡,气泡频率较大;随着远离气弹尾部,管道中间气泡频率逐渐增大。根据气泡频率波动变化将液弹分为3个区域,尾流区占液弹长度的40%~45%,过渡区占10%~15%,主流区占40%~50%。尾流区和主流区内,空泡份额呈“三峰型”分布;随着气相流速的增加,尾流区内近壁面处峰值逐渐增大,管道中间峰值逐渐下降,但主流区内情况相反。气泡直径随气相流速的增大而变大,且液弹内气泡聚合和破碎现象较少。  相似文献   

3.
竖直圆管内泡状流空泡份额径向分布实验研究   总被引:1,自引:1,他引:0  
常温常压下,采用光学探针测量方法,对圆管(内径50 mm)内空气 水两相竖直向上泡状流空泡份额的径向分布特性进行了实验研究。结果表明,竖直圆管内泡状流空泡份额的径向分布随气液两相表观流速不同而变化。液相流速较高时空泡份额分布呈“壁峰型”,即中心区域变化平缓,近壁区出现峰值后迅速降低;液相静止时,随气相流速增加,空泡份额增加速度沿径向向外逐渐减小,气相流速较大时分布呈“核峰型”,即空泡份额随径向位置向外呈减小趋势;液相流速较低时分布呈现出过渡型。探针测量面积加权平均空泡份额与通过重位压降得到的空泡份额的相对偏差小于10%。  相似文献   

4.
倾斜圆管内泡状流空泡份额特性实验研究   总被引:2,自引:0,他引:2  
采用光纤探针测量方法对倾斜圆管(内径为50 mm)内空气-水两相泡状流空泡份额分布特性进行实验研究。结果表明,截面平均空泡份额随倾斜角度的增加而减小,倾斜角度大于5°时减小速率明显减慢;竖直条件下空泡份额径向分布呈"马鞍形",即空泡份额除在近壁区出现峰值然后迅速降低到最小值外,在其他区域几乎不随位置发生变化;倾斜条件下气泡明显向上壁面聚集,中心线上方近壁区空泡份额峰值增加,中心线下方近壁区空泡份额峰值被削弱,倾斜角度较大时甚至消失。  相似文献   

5.
本文通过可视化方法对竖直与倾斜条件下矩形通道内弹状流单元的参数进行研究,尝试给出摇摆状态下矩形通道内弹状流压力模型。通过图像处理给出气弹段空泡份额以及两相速度的计算关系式,并验证漂移流模型在液弹段的适用性,给出弹状流单元的长度份额以及空泡份额的计算关系式。根据实验结果给出摇摆条件下矩形通道内弹状流压力组分的模型,并重点分析摩擦压降模型的适用程度。结果表明,弹状流压力模型可很好地预测摇摆条件下矩形通道内的压力。  相似文献   

6.
Related to nuclear reactor safety problems, such as the loss of coolant accident caused by some small crevasses in nuclear reactor, choked flows after postulated breaks of hot and cold legs of pressurized water reactors and the boiling flow instability in parallel channels, the characteristics of pressure wave propagation were investigated experimentally for the air-water bubbly and slug two-phase flow in a vertical pipe. Pressure wave was generated from the small pressure disturbance by the up-and-down movement of piston in the test section. Air void fraction was up to 0.7 and superficial liquid velocity was up to 1.5 m/s as experimental conditions. The experimental results show that the pressure wave propagation velocity in bubbly flow decreases acutely with the increase of air void fraction from 0 to 0.05. In slug flow, it is constant when the air void fraction is less than 0.5 but increases gradually when the void fraction increases beyond 0.5. The attenuation coefficient of pressure wave increases with the increase of air void fraction in bubbly flow. The dependency of pressure wave propagation velocity on angle frequency ω in air-water flow shows the dispersion characteristic. The propagation velocity and attenuation coefficient increases gradually with the increase of angle frequency. However, the increase vanishes slowly as the angle frequency reaches 250 Hz in bubbly flow. The propagation of pressure wave in bubbly flow is independent of the superficial velocity of fluids in the range of experiment.  相似文献   

7.
An experimental and theoretical study on the bubble shape of intermittent flow in the horizontal and inclined pipes has been carried out. The experiment results show that the bubble shape depends on the Froude number, bubble length and pipe inclination. The bubble with staircase pattern tail is observed at low Froude numbers, which is corresponding to plug flow. A model for the prediction of the bubble shape in horizontal and inclined pipes is proposed. The model is able to predict the bubble shape, flow pattern transition between plug and slug flow regimes as well as nose-tail inversion phenomenon observed in the downwardly inclined pipe. Validation shows the model can well predict the bubble shapes in horizontal and inclined pipes. The model discloses that the transition between plug and slug flow regimes occurs within a region. The Froude number range for plug flow regime in the downwardly inclined pipe is much wider than that in the horizontal or upwardly inclined pipe. The assumption of fully developed liquid film under the long bubbles tends to under-estimate the liquid fraction in this part of the slug structure, especially, for the intermittent flow in the upwardly inclined pipe with high Froude numbers.  相似文献   

8.
用热膜探针测量了内径为 3 5mm的水平管泡状流中的液流速度 ,同时用双头电导探针测量了有关的相界面参数 ,结果表明 ,局部液流平均速度在靠管道下部的分布与单相液流的分布类似 ,在靠管道上部突然减小 ;局部液流平均速度在靠管道下部随气流折算速度的增加而增加 ,在靠管道上部则随气流折算速度的增加而减小 ;局部含气率和气泡频率随气流折算速度的增加而增大 ,在靠近管道上壁处有一峰值 ,其分布规律随液流速度的增加而趋向均匀  相似文献   

9.
研究两相流相间阻力特性对系统程序关键本构模型封闭具有重要意义。本文基于竖直圆管开展了空气-水两相流实验,采用四探头电导探针对空泡份额、气泡弦长和界面面积浓度等气泡参数的径向分布进行了测量。结果表明空泡份额和气泡弦长呈现“核峰型”分布,而界面面积浓度并没有表现出随流速的单调关系。进一步开发了泡状流和弹状流的相间曳力模型,考虑了液相表观流速与管径对气泡尺寸分布的影响,建立了临界韦伯数与不同液相流速的关系。计算得到的空泡份额和界面面积浓度与实验数据整体符合较好,验证了模型的可靠性,为两相流相间阻力特性研究提供参考意义。  相似文献   

10.
The liquid film characteristics at the onset of flooding in an inclined pipe (16 mm i.d. and 2.2 m in length) have been investigated experimentally. A constant electric current method and visual observation were utilized to elucidate the flow mechanisms at the onset of flooding. Two mechanisms are clarified to control the flooding in lower flooding and upper flooding, respectively. The lower flooding occurred at lower liquid flow rate and high pipe inclination angle. In this mechanism, the liquid film does not block the pipe cross-section. On the other hand, the upper flooding occurred at higher liquid flow rate and low pipe inclination angle. In this case, blocking of the pipe cross-section by large wave and entrainment plays an important role. The experimental data indicated that there was no reversal motion of liquid film at the onset of flooding during the operation of both lower flooding and upper flooding. The effects of pipe inclination angle on the onset of flooding are also discussed.  相似文献   

11.
A set of two phase flow experiments for different conditions ranging from bubbly flow to cap/slug flow have been performed under isothermal concurrent upward air–water flow conditions in a vertical column of 3 m height. Special attention in these experiments was devoted to the transition from bubbly to cap/slug flow. The interfacial velocity of the bubbles and the void fraction distribution was obtained using 2 and 4 sensors conductivity probes.Numerical simulations of these experiments for bubbly flow conditions were performed by coupling a Lagrangian code with an Eulerian one. The first one tracks the 3D motion of the individual bubbles in cylindrical coordinates (r, ?, z) inside the fluid field under the action of the following forces: buoyancy, drag, lift, wall lubrication. Also we have incorporated a 3D stochastic differential equation model to account for the random motion of the individual bubbles in the turbulent velocity field of the carrier liquid. Also we have considered the deformations undergone by the bubbles when they touch the walls of the pipe and are compressed until they rebound.The velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS). The turbulent kinetic energy k, and the dissipation rate ? transport equations were simultaneously solved using the k, epsilon model in a (r, z) grid by the finite volume method and the SIMPLER algorithm. Both Lagrangian and Eulerian calculations were performed in parallel and an iterative self-consistent method was developed. The turbulence induced by the bubbles is an important issue considered in this paper, in order to obtain good predictions of the void fraction distribution and the interfacial velocity at different gas and liquid flow conditions.  相似文献   

12.
1IntroductionTwo-phasebubblyflowisencounteredinawidevaxietyofindustrialapplications;Suchasintheproductionofelectricalpowerandpetrochendcajsindustry.Oneofthemosttwortantandyetleastunderstandingaspectsoftwo-phaseflowislateralphasedistribution.Theinformationonphasedistributionisarequiredparameterforhydrodynalincandthermalcalculationsinmanypracticalapplications.Considerableexperimentalandseal-theoreticalresearchhasbeenconductedbymanyresearchersinverticalupwaxdsordownwaxdsbubblynow.[1-7]However,L…  相似文献   

13.
高温热管运行特性的分析与预测,对热管设计和应用具有重要意义。为分析高温热管内两相流动传热特性,首先建立钠热管的计算流体力学(CFD)分析模型,并对模型计算值与钠热管稳态实验数据进行对比校核,模拟结果与实验测点温度的绝对误差小于40℃,相对误差在5%以内;其次,利用本文模型与方法对不同传热功率和倾角下的热管内部流场特性进行分析研究。研究表明,均匀加热条件下,蒸气腔内的速度在蒸发段接近线性变化,而在冷凝段,气体流速减小致使压强回升,同时,蒸气的流动压降和速度随加热功率增加呈下降趋势;在热管水平和倾角运行工况,热管内两相流动压降中液相压降均占主导;而气液间剪切效应中,气体流动速度为主导效应。本文模型可为热管堆等高温热管应用领域提供热管设计与分析方法。   相似文献   

14.
以空气和水为工质,应用高速摄像仪,对竖直窄矩形通道(3.25 mm×40 mm)内气液两相弹状流进行了可视化实验研究。气、液相表观速度分别为0.1~2.51 m/s和0.16~2.62 m/s,工作压力为常压。实验中发现窄矩形通道内弹状流与圆管中存在较大差别,气弹多发生变形,高液相流速时变形更为严重。窄边液膜含气量较高,在高液相流速时窄边液膜不下落,宽边液膜中含有由气弹头部进入和气弹尾部进入的气泡。气弹速度受气弹头部形状和宽度影响较大,受气弹长度影响较小。气弹速度可由Ishii & Jones-Zuber模型计算,但在低液相折算速度时偏差较大,其主要原因为漂移速度计算值较实验值偏小。  相似文献   

15.
In view of practical importance of the drift flux model for two-phase flow analysis in general, and in the analysis of nuclear reactor transients and accidents in particular, the distribution parameter, and the drift velocity have been studied for two-phase flow in a vertical large diameter pipe. In this, study, local measurements were performed on flow parameters, such as void fraction, gas velocity and, liquid velocity in a vertical upward air–water two-phase flow in a pipe of 200 mm inner diameter and, 25 m in height by using the local sensor techniques such as hot-film probes, optical multi-sensor, probes and differential pressure gauges. Two-phase flow regimes in a vertical large diameter pipe, were classified into bubbly, churn and slug flows according to the visual observation. The values of the, distribution parameter and the mean drift velocity were determined directly by their definition using experiment data of the local flow parameters in a two-phase flow in a large diameter pipe. Various existing drift flux correlations were compared with the present experimental results and experimental data obtained by other researchers. A detailed discussion on the problems of these correlations was presented in this paper.  相似文献   

16.
The purpose of the experimental study is to investigate the effects of pipe inclination, pipe length, pipe diameter and surface tension of the working liquid on the onset of flooding of gas–liquid adiabatic counter-current two-phase flow in inclined pipes. Flooding in inclined pipes were observed by using the combination of visual observation, measurement of discharged liquid flow rate and time variation of liquid hold-up. And it was defined as the maximum air flow rate at which the discharged liquid flow rate is equal to the inlet liquid flow rate. As a result we proposed a correlation to predict the flooding gas velocity in inclined pipes under a given liquid flow rate, and the predictions agreed well with the experimental observations.  相似文献   

17.
An analysis on the stability of the governing differential equations for area averaged one-dimensional two-fluid model is presented. The momentum flux parameters for gas and liquid are introduced to incorporate the effect of void fraction profiles and velocity profiles. The stability of the governing differential equations is determined in terms of gas and liquid momentum flux parameters. It is shown that the two-fluid model is well posed with certain restrictions on the liquid and gas momentum flux parameters. Simplified flow configurations for bubbly flow, slug flow, and annular flow are constructed to test the validity of proposed stability criteria. The momentum flux parameters are calculated for these flow configurations by assuming a power-law profile for both velocity and void fraction. Existing correlation for volumetric distribution parameter Co is used. By employing simplified velocity profiles, the void fraction profile is determined from Co correlation. It is found that the void fraction is wall-peaked at low void fraction and it becomes center-peaked as the void fraction increases. A simplified annular flow is also constructed. With these flow configurations, the momentum flux parameters are determined. It is shown that the calculated momentum flux parameters are located in the stable region above the analytically determined stability boundary. The analyses results indicate that the use of momentum flux parameter is promising, since they reflect flow structure and help to stabilize the governing differential equations.  相似文献   

18.
In nuclear engineering fields, gas–liquid bubbly flows exist in channels with various shape and size cross-sections. Although many experiments have been carried out especially in circular pipes, those in a noncircular duct are very limited. To contribute to the development of gas–liquid bubbly flow model for a noncircular duct, detail measurements for the air–water bubbly flow in a square duct (side length: 0.136 m) were carried out by an X-type hot-film anemometry and a multi-sensor optical probe. Local flow parameters of the void fraction, bubble diameter, bubble frequency, axial liquid velocity and turbulent kinetic energy were measured in 11 two-phase flow conditions. These flow conditions covered bubbly flow with the area-averaged void fraction ranging from 0.069 to 0.172. A pronounced corner peak of the void fraction was observed in a quarter square area of a measuring cross-section. Due to a high bubble concentration in the corner, the maximum values of both axial liquid velocity and turbulent kinetic energy intensity were located in the corner region. It was pointed out that an effect of the corner on accumulating bubble in the corner region changed the distributions of axial liquid velocity and turbulent kinetic energy intensity significantly.  相似文献   

19.
Lack of local void fraction data in a rod bundle makes it difficult to validate a numerical method for predicting gas–liquid two-phase flow in the bundle. Distributions of local void fraction and bubble velocity in each subchannel in a 4×4 rod bundle were, therefore, measured using a double-sensor conductivity probe. Liquid velocity in the subchannel was also measured using laser Doppler velocimetry (LDV) to obtain relative velocity between bubbles and the liquid phase. The size and pitch of rods were 10 and 12.5 mm, respectively. Air and water at atmospheric pressure and room temperature were used for the gas and liquid phases, respectively. The volume fluxes of gas and liquid phases ranged from 0.06 to 0.15 m/s and from 0.9 to 1.5 m/s, respectively. Experimental results showed that the distributions of void fraction in inner and side subchannels depend not only on lift force acting on bubbles but also on geometrical constraints on bubble dynamics, i.e. the effects of rod walls on bubble shape and rise velocity. The relative velocity between bubbles and the liquid phase in the subchannel forms a non-uniform distribution over the cross-section, and the relative velocity becomes smaller as bubbles approach the wall due to the wall effects.  相似文献   

20.
For gas-liquid two-phase flow, two kinds of fundamental equations have been proposed by the methods of hydrodynamics and hydraulics. The hydrodynamic equation, to avoid analytical difficulties, does not deal with two-phase flow itself, but with a hypothetical liquid flow which has actual physical quantities in the region where the liquid phase really exists and has the imaginary physical quantities of liquid in the region where the gas exists, for each instant, and with a hypothetical gas flow similarly. The hydraulic equation differs from the usual form in the treatment of friction term or interaction, and has better physical insight. These equations are analyzed mathematically and some relationship between physical quantities centering void fraction are discussed. Hydrodynamic equation shows the void fraction distribution to have relation to pressure loss and velocity distributions, and, for the case of laminar two-phase flow with axial symmetry, explicit expression is presented. By hydraulic equation, the relation between void fraction and other variables are discussed. For the upward two-phase flow with constant flow area, gas-liquid interaction force is discussed theoretically and experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号