首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A new methodology for the preparation of single phase bimetallic Au–Pd on activated carbon (AC) has been recently developed and now used for preparing Au/Pd catalysts at different atomic ratio. The bimetallic catalysts have been tested in the liquid phase oxidation on glycerol in water using oxygen as the oxidant and compared with monometallic Au and Pd catalysts. We observed that strong synergistic effect is present in a large range of Au/Pd ratio, being maximized for Au90–Pd10 composition. Gold-rich composition showed an increased durability compared to palladium-rich alloy.  相似文献   

2.
Pd hydrosol was synthesized by reducing PdCl2 solution with dissolved H2 in the presence of PDDA [poly(diallyldimethylammonium chloride)] as ionic stabilizer. O2 treatment resulted in the reappearance of ligand to metal charge transfer bands of PdCl 4 2− . Repeated oxidation and hydrogen treatments caused aggregation/agglomeration of the Pd particles yielding big spherical aggregates of 30–50 nm but still keeping the size of the 5–6 nm primary particles. Aggregation was attributed to the reduction of PdCl 4 2− anion having high local densities around Pd particles surrounded by PDDA polycation. Au–Pd bimetallic hydrosols were synthesized by reduction with 2-propanol and by pulse radiolysis technique in the presence of PDDA. Both reduction modes synthesize Au core–Pd shell structures. The mode of reduction was observed to affect the particle size and the thickness of the Au core and Pd shell. At the Au rich samples the differences in the optical spectra were attributed to different dispersions of the Au–Pd particles. Au–Pd bimetallic hydrosols were adsorbed on Aerosil 200 and the supported samples were tested in gas phase hydrogenation of acetylene.  相似文献   

3.
Two-dimensional assemblies of Au–Pt bimetallic nanoparticles are generated in situ on polyethyleneimmine (PEI) silane functionalized silicon and indium tin oxide (ITO) coated glass surfaces. Atomic force microscopy (AFM), UV–Visible spectroscopy, and electrochemical measurements reveal the formation of core–shell structure with Au as core and Pt as shell. The core–shell structure is further supported by comparing with the corresponding data of Au nanoparticle assemblies. Static contact angle measurements with water show an increase in hydrophilic character due to bimetallic nanoparticle generation on different surfaces. It is further observed that these Au–Pt core–shell bimetallic nanoparticle assemblies are catalytically active towards methanol electro-oxidation, which is the key reaction for direct methanol fuel cells (DMFCs).  相似文献   

4.
Mono and bimetallic catalysts based on Au and Pd nanoparticles were synthesized by sol immobilization method. The catalytic oxidation of polyethylene glycol dodecyl ether was performed using as-synthesized supported catalyst. The use of water as solvent and dioxygen as oxidant makes the reaction interesting from both an economic and environmental point of view. For 100 min, the conversion of polyethylene glycol dodecyl ether using Au–Pd/C bimetallic catalyst was 38%, showing an increase of 9% for Au/C and 15% for Pd/C respectively indicating that a synergetic effect exists between Au and Pd. For the Au–Pd/C catalyst, adding Au after the prior addition and reduction of Pd metal can form the most active catalyst.  相似文献   

5.
A planar catlytic combustion gas sensor based on Pd/Pt catalyst supported on F-doped SnO2 nano-crystalline materials has been designed and fabricated for hydrogen detection. The sensor consists of platinum heaters on an alumina plate coated with a catalytic layer and compensating layer. This sensor exhibited better performance than that of the sensors employing sensing material of Pd/Pt catalyst on γ-Al2O3 and of Pd/Pt catalyst on nano-crystalline SnO2. The detection limit of the sensor at 370 °C is in the concentration range of 0.5–5% (v/v), with an excellent linearity of signal voltage to the hydrogen gas concentration.  相似文献   

6.
The sulfur tolerance (i.e., degree of sulfidation) of Pd and Pt in sulfided bimetallic Pd–Pt catalysts (Pd : Pt mole ratio of 4 : 1) supported on USY (ultrastable Y) zeolites (SiO2/Al2O3 = 10.7, 48, and 310) was investigated using an extended X‐ray absorption fine structure (EXAFS) method. The sulfidation of the catalysts was done in a 1000 ppm H2S–2% H2/N2 stream at 573 K for 0.5 h. In the Fourier transforms of Pd K‐edge and Pt LIII‐edge EXAFS spectra, both of the peaks due to metallic Pd and to metallic Pt for the Pd–Pt/USY (SiO2/Al2O3 = 10.7) catalyst remained most after sulfidation. Further, the results of the Fourier transforms confirmed that the sulfur tolerance of both Pd and Pt decreased with increasing SiO2/Al2O3 ratio, suggesting that Pd and Pt become sulfur‐tolerant when Pd–Pt bimetallic particles are supported on highly acidic USY zeolite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Activity and selectivity of mono- and bimetallic catalysts containing nano-particles of gold stabilized by different supports are compared in dimethyldisulfide removal from air at 150–320 °C. TiO2-supported Au and Au–Pd samples demonstrate stable and efficient DMDS removal at temperature as low as 155 °C, with formation of the two products: SO2 and elemental S. On the contrary, no formation of elemental S is detected in the case of Au, Au–Rh, and Au–Pd catalysts supported on HZSM-5, H-beta, or MCM-41. The most active Au–Rh/HZSM-5 catalyst demonstrates an efficient DMDS removal at 290 °C, with quantitative DMDS-to-SO2 oxidation. Characterization of catalysts with TPR, XRD, and (XANES + EXAFS) confirms a high dispersion of the metallic phases in all catalysts under study. Specific interaction between nano-particles of gold and titanium dioxide surface could be responsible for the unusual catalytic behavior of Au/TiO2 samples, as distinct from Au/zeolitic systems.  相似文献   

8.
Bimetallic Pt–Pd/SiO2–Al2O3 catalysts exhibited much higher activities in aromatic hydrogenation of distillates than monometallic Pt/SiO2–Al2O3 and Pd/SiO2–Al2O3 catalysts. The studies of extended X‐ray absorption fine structure (EXAFS) indicated that there was an interaction between Pt and Pd in the Pt–Pd/ SiO2–Al2O3 catalyst. Furthermore, from the EXAFS, it was assumed that the active metal particle on the Pt–Pd/SiO2–Al2O3 catalysts is composed of the “Pd dispersed on Pt particle” structure. Regarding both the activities of aromatic hydrogenation and the EXAFS results, it was concluded that the Pd species dispersed on Pt particles were responsible for the high activity of the bimetallic Pt–Pd/SiO2–Al2O3 catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
A technique for measurements of the sticking probability of hydrogen on metal surfaces at high (ambient) pressure is described. As an example, measurements for Ni, Pd and Pt at a hydrogen pressure of 1 bar and temperatures between 40 and 200 °C are presented. The sticking probabilities are extracted from measurements of the local gas composition over the catalytic surface, with the help of a model for the H–D exchange reaction. The sticking probability is lowest for Ni and similar for Pd and Pt. The apparent energies of desorption derived from the adsorption rates decrease in the order Ni, Pd, Pt. The transition between β- and α-phase in the H–Pd system has a significant effect on the activity for Pd.  相似文献   

10.
Pyridine and piperidine inhibited the hydrodesulfurization of 4,6-dimethyldibenzothiophene (4,6-DM-DBT) over alumina-supported Pt, Pd, and Pt–Pd catalysts. The Pd catalyst was least sensitive and the Pt–Pd catalysts were most sensitive to the nitrogen-containing compounds. Pyridine was a stronger inhibitor than piperidine at low initial pressure, but the reverse was true at high initial pressure. Hydrogenation of the tetrahydro to the hexahydro and on to the perhydro sulfur-containing intermediate as well as the removal of sulfur from these intermediates was slowed down by piperidine and pyridine. The hydrogenation pathway in the hydrodesulfurization of 4,6-DM-DBT was inhibited much more than the direct desulfurization pathway. The hydrogenation of the desulfurized products 3,3′-dimethylcyclohexylbenzene and 3,3′-dimethylbiphenyl over the Pt–Pd catalysts was suppressed by piperidine and pyridine. Piperidine and pyridine substantially decrease the ability of noble metal particles to convert refractory molecules like 4,6-DM-DBT and diminish the advantage of bimetallic Pt–Pd over monometallic Pt or Pd catalysts.  相似文献   

11.
Au–Ag bimetallic nanoparticles have been fabricated by one-step simple electrochemical deposition method using ionic liquid as green electrolyte (1-butyl-3-methylimidazolium tetrafluoro borate). Fabricated Au–Ag bimetallic nanoparticles have been characterized using cyclic voltammetry (CV), FE-SEM, UV–vis spectroscopy, and X-ray diffraction (XRD) studies. The electrodeposited Au–Ag bimetallic nanoparticles were found in the size range of 16–30 nm, respectively. This type of Au–Ag bimetallic nanoparticles could be directly applied for the optoelectronic and biosensing applications.  相似文献   

12.
The influence of metal particle size of monometallic and bimetallic supported catalysts (Au, Pd, Au–Pd)/C was studied using as a model reaction the liquid phase oxidation of glycerol. By tuning the metal particle size from 2 to 16 nm a progressive decrease of activity and simultaneously an increase in the selectivity to sodium glycerate was observed. Moreover, the influence of the temperature was studied and it was found that by increasing the temperature, only with a large particle size the formed glycerate was retained and not over-oxidized to tartronate.  相似文献   

13.
A novel method was developed to synthesize bi-metallic nanoparticles (Au–Pt) on boron-doped diamond (BDD) substrate. This method consisted of (a) deposition of a small amount of gold (equivalent to a few monolayers) by sputtering on the BDD surface, (b) heat treatment of the obtained sample at 600 °C in air, resulting in the formation of stable nanoparticles on BDD (Au/BDD electrode), (c) electrodeposition of Pt on the Au/BDD surface occurring preferentially on the Au nanoparticles, and finally (d) heat treatment at 400 °C to enhance the interaction between Au and Pt. The ratio between Au and Pt nanoparticles can be modified by modifying the amount of electrodeposited Pt and was estimated using cyclic voltammetry. These Pt-Au/BDD composite electrodes were used to study oxygen reduction using both potential sweep (cyclic voltammetry) and hydrodynamic (turbine electrochemical cell) methods.  相似文献   

14.
Zeolite β with Si/2Al ratios of 60, 100, and 200 were synthesized using tetraethlammonium hydroxide (TEAOH) as the structure-directing agent (SDA) in the absence of alkali metal cations. Pt, Pd and Pt-Pd catalysts supported on the zeolite β samples were studied in n-heptane (n-C7) hydroisomerization. The Pt/β catalysts showed a higher catalytic activity than the Pd/β catalysts. For the Pt/β with a Si/2Al ratio of 100, its n-C7 conversion and selectivity of C7 isomers were observed to be 87.06% and 75.48% respectively at 250C. The activity of n-C7 conversion was stable for at least 82 h. However, the selectivity of C7 isomers was gradually decreased with the reaction time. Experimental data also showed that the addition of Pd to catalyst Pt/β enhanced the n-C7 conversion, but lowered the selectivity of C7 isomers. Pd catalyst was also observed to minimize the formation of aromatics in comparison with Pt catalyst.  相似文献   

15.
Aim of the paper is to apply a modified version of the Rietveld method to two Au–Pd/C catalysts prepared by successive impregnation and reduced in situ by a special holder in order to show that a suitable WAXS analysis, performed in routine lab and using an X-ray conventional generator, can be very detailed and rich of information especially when a bimetallic catalyst has to be considered. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Simple and eco-friendly electro deposition method was employed for the fabrication of Au–Ag bimetallic nanoparticles modified glassy carbon electrode. Nano Au–Ag film modified glassy carbon electrode surface morphology has been examined using atomic force microscopy. Electrodeposited Au–Ag bimetallic nanoparticles were found in the average size range of 15–50 nm. The electrochemical investigations of nano Au–Ag/1-butyl-3-methylimidazolium tetrafluoroborate-nafion film have been carried out using cyclic voltammetry and electrochemical impedance spectroscopy. The nano Au–Ag/1-butyl-3-methylimidazolium tetrafluoroborate-nafion film modified glassy carbon electrode holds the good electrochemical behavior and stability in pH 7.0 phosphate buffer solutions. The nano Au–Ag/1-butyl-3-methylimidazolium tetrafluoroborate-nafion modified glassy carbon electrode was successfully employed for the detection of H2O2 in the linear range of 1–250 μM in lab samples, and 1 × 10−3–2 × 10−2 M in real samples, respectively.  相似文献   

17.
The effect of praseodymium oxide and cerium–praseodymium mixed oxide in the Pt electrocatalyst performance for oxygen reduction reaction (ORR) in Phosphoric Acid Fuel Cells (PAFCs) has been studied. Three electrocatalysts (Pt/C, PtPrO x /C and PtCe0.9Pr0.1O y /C, where x and y are ≤2) have been prepared and tested by cyclic voltammetry (CV) and long term chronoamperometry (CA) experiments. The fresh and tested electrocatalysts have been characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy–Energy Dispersion Spectroscopy (TEM–EDS). The Pr and Ce–Pr oxides improved Pt dispersion in the fresh electrocatalysts with regard to the Pt-only catalyst, and the PtPrO x /C and PtCe0.9Pr0.1O y /C electrocatalysts presented a slightly improved catalytic activity towards ORR in comparison to the reference Pt/C electrocatalyst. The activity decay during the long term CA tests was slower for PtPrO x /C and PtCe0.9Pr0.1O y /C than for Pt/C. Although the Pr and Ce–Pr oxides were dissolved during the CA measurements, the Pt sintering was prevented.  相似文献   

18.
Substituent effects have been used to probe the nature of the transition state to catalytic carbon–halogen bond breaking. Kinetics measurements have determined the activation energies (E act to C–Cl bond breaking on the Pd(111) surface and C–I bond breaking on the Pd(111) and Ag(111) surfaces. These barriers have been measured using alkyl halides with varying degrees of fluorine substitution. The activation energies have been correlated with the inductive or field substituent constants (σF) of the fluorinated alkyl groups in order to determine reaction constants (E act=E0+ρσF) for the dehalogenation reactions. In all three cases it has been found that the barriers are insensitive to inductive substituent effects and the reaction constants are all relatively small: ρ= −0.5± 1.0 kcal/mol for C–Cl cleavage on Pd(111), ρ= −0.3±0.8 kcal/mol for C–I cleavage on Pd(111), and ρ= −2.9±0.4 kcal/mol for C–I cleavage on Ag(111). This implies that the transition state for dehalogenation is homolytic and occurs early in the reaction coordinate. The implications of this result are discussed for catalytic dehalogenation processes such as hydrodechlorination. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
This work tries to study the problem of methanol crossover through the polymer electrolyte in direct methanol fuel cells (DMFCs) by developing new cathode electrocatalysts. For this purpose, a series of gas diffusion electrodes (GDEs) were prepared by using single-walled carbon nanotubes (SWCNTs) supported Pt–Pd (Pt–Pd/SWCNT) with different Pd contents at the fixed metal loading of 50 wt%, as bimetallic electrocatalysts, in the catalyst layer. Pt–Pd/SWCNT was prepared by depositing the Pt and Pd nanoparticles on a SWCNTs support. The elemental compositions of bimetallic catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES) system. The performances of the GDEs in the methanol oxidation reaction (MOR) and in the oxygen reduction reaction with/without the effect of methanol oxidation reaction were investigated by means of electrochemical techniques: cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The results indicated that GDEs with Pt–Pd/SWCNT possess excellent electrocatalytic properties for oxygen reduction reaction in the presence of methanol, which can originate from the presence of Pd atoms and from the composition effect.  相似文献   

20.
Epitaxially grown Pd particles partly embedded in amorphous Al2O3 were subjected to annealing and reductive treatments in the temperature range 523–873 K to induce a possible Pd–Al interaction. The structural, morphological and compositional changes were monitored by transmission electron microscopy and selected area electron diffraction. Formation of Pd4Al3 and PdAl alloys has been observed upon annealing in 1 bar He for 1 h at T > 523 K and upon reduction in 1 bar H2 for 1 h at T ≥ 523 K, respectively. Both alloys appear to be stable up to 873 K, although Pd4Al3 shows beginning decomposition at and above 873 K. The stability under oxidative conditions was found to be very similar, a transformation back into metallic Pd sets in for both compounds at around 573–623 K. In agreement with previous studies on Pd/SiO2, the formation of an amorphous hydride phase and/or a heavily distorted Pd lattice has been detected after reduction in hydrogen at 523 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号