首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of growth conditions and catalyst lifetime on the supergrowth of carbon nanotubes (CNTs) through a water assisted chemical vapor deposition has been investigated. The reasons behind the observed sudden termination of the CNT growth were explored. A proper amount of water was found to improve the activity of the catalyst and enhance the growth rate of CNTs. However, the introduction of water did not extend the catalyst lifetime leading to unavoidable termination of the CNT growth. Further experiments demonstrated that in addition to catalyzing the CNT growth, catalyst particles can also decompose/etch the C sp2/sp3 bonds including those in the CNTs. The existing termination mechanism for the CNT growth fails to explain this. We therefore propose a model based on the catalyst phase transformation using the Johnson–Mehl–Avrami–Kolmogorov theory to predict the growth rate and termination of the CNT growth.  相似文献   

2.
The hydrogenation of levulinic acid (LA) to y-valerolactone (GVL) by using water as solvent is a crucial process in the production of fine chemicals from biomass.An ultrathin carbon layer coating CoRu bimetallic catalyst supported on silica (CoRu@C/SiO2) is prepared by using tannis-ligated cobalt-ruthe-nium complex on silica as precursors,and applied for catalyzed synthesis of GVL from LA.Because of the synergistic effect between cobalt and ruthenium,the addition of small amounts of Ru to Co catalysts can increase the catalytic activity in the aqueous hydrogenation of LA.The ultrathin carbon layer covered on the CoRu bimetallic catalyst can greatly reduce the leaching of active metals.The CoRu@C/SiO2 cata-lyst achieves high stability and is reused up to 5 runs without significant loss of performance in aqueous hydrogenation of levulinic acid.  相似文献   

3.
Catalytic hydrogenation of citral was studied on a Pt on active carbon cloth (ACC) catalyst, with a Pd in ionic liquid on ACC and a commercial Pt on active carbon powder catalysts. The metal was supported on active carbon either by direct impregnation or utilizing the ionic liquid as the intermediate phase on the carbon. The influence on selectivity and activity, of the most important variables, such as temperature and pressure, was investigated in a batch reactor. Four consecutive experiments were carried out with each catalyst. The aim with the reuse of catalysts in the batch reactor was to elucidate eventual catalyst deactivation. The decrease in activity was very notable in the case of traditional impregnated catalysts, whereas the novel SSIL-TM (structured supported ionic liquid-transition metal) or Pd in ionic liquid on active carbon essentially maintained its activity in four consecutive batches. The catalysts were characterized with scanning electron microscopy, N2 physisorption, and inductively coupled plasma analysis combined with mass spectroscopy. With the Pt on active carbon fibre catalyst, 80–100% selectivity of carbonyl group hydrogenation was achieved at 15% conversion, whereas the Pd in ionic liquid on ACC catalyst displayed an impressive metal efficiency (citral-to-Pd ratio of 156, mol:mol), selectivity (45%) and activity (92% conversion at 140 min) as well as tolerance towards catalyst deactivation. Supported ionic liquids provide a new reaction environment for catalytic transformations.  相似文献   

4.
以多壁碳纳米管和椰壳活性炭为载体,分别采用溶胶固载法和等体积浸渍法制备负载型纳米金催化剂。采用N_2吸附-脱附、XRD、TEM和XPS等对碳载体和纳米金催化剂样品进行表征,并研究纳米金催化剂在肉桂醛选择性加氢反应中的催化性能。结果表明,HNO_3-H_2SO_4预处理可以增加碳载体表面的含氧基团和含氮基团,在肉桂醛加氢反应中,溶胶固载法得到的更小尺寸的纳米金催化剂对C=C双键加氢选择性高,等体积浸渍法制备的纳米金催化剂对C=O双键加氢选择性高,椰壳活性炭为载体催化剂的C=C加氢催化活性优于多壁碳纳米管。  相似文献   

5.
Hydrogenation of 4‐chloro‐2‐nitrophenol (CNP) was carried out at moderate hydrogen pressures, 7–28 atm, and temperatures in the range 298–313 K using Pt/carbon and Pd/γ‐Al2O3 as catalysts in a stirred pressure reactor. Hydrogenation of CNP under the above conditions gave 4‐chloro‐2‐aminophenol (CAP). Dechlorination to form 2‐aminophenol and 2‐nitrophenol is observed when hydrogenation of CNP is carried out above 338 K, particularly with Pd/γ‐Al2O3 catalyst. Among the catalysts tested, 1%Pt/C was found to be an effective catalyst for the hydrogenation of CNP to form CAP, exclusively. To confirm the absence of gas–liquid mass transfer effects on the reaction, the effect of stirring speed (200–1000 rpm) and catalyst loading (0.02–0.16 g) on the initial reaction rate at maximum temperature 310 K and substrate concentration (0.25 mole) were thoroughly studied. The kinetics of hydrogenation of CNP carried out using 1%Pt/C indicated that the initial rates of hydrogenation had first order dependence with respect to substrate, catalyst and hydrogen pressure in the range of concentrations varied. From the Arrhenius plot of ln rate vs 1000/T, an apparent activation energy of 22 kJ mol?1 was estimated. © 2001 Society of Chemical Industry  相似文献   

6.
When in a pure form, carbon nanotubes are known to be stable in air up to ∼800 K making them attractive for a large variety of applications. In this work, we report a significant decrease of ignition temperature (in some cases occurring at ∼500 K) and a reduction in the apparent activation energy for oxidation in air as a result of impregnation with nanoparticles (<2 nm) of metal (Pt, Pd, Ni and Co) acetylacetonates or by decoration with corresponding oxides. Surprisingly, defects introduced by partial oxidation of the carbon nanotubes do not in practice have any influence on the enhancement of further oxidation. Reduction temperatures of metal oxides with H2 were close to those of other carbon supported catalyst materials. However, the carbon nanotubes showed a tendency for low temperature gasification in the presence of hydrogenation catalyst metals (Pt, Pd).  相似文献   

7.
采用固定床加氢装置对原料油(蜡油)进行加氢精制研究,采用控制变量法,考察了反应温度,液时空速,氢油比等对加氢效果的影响。以Ni-Mo/γ-Al_2O_3作为催化剂对加氢工艺进行优化,由数据表明升高温度、适当降低液时空速、增大氢油体积比,均有助于提高催化剂的脱硫和脱氮效果。Ni-Mo/γ-Al_2O_3催化剂在中高压条件下,反应温度为400℃,液时空速为0.25 h~(-1),氢油体积比在2 000左右时,加氢精制的效果最好。  相似文献   

8.
采用固定床反应器研究了Ni/Al2O3上CS2对裂解汽油原料油中主要化合物芳烃、单烯烃和共轭烯烃加氢活性的影响,其对加氢抑制的顺序为:芳烃单烯烃共轭烯烃。XRD、XPS和IR表征分析表明,Ni/Al2O3催化剂失活的可能原因是CS2吸附在活性相表面,部分CS2碳硫键断裂发生氢解反应产生H2S和CH4,H2S与镍活性中心作用形成镍硫化合物。原料油中部分CS2吸附在催化剂表面,催化剂对共轭烯烃加氢也失去活性。  相似文献   

9.
Han ZJ  Levchenko I  Yick S  Ostrikov KK 《Nanoscale》2011,3(11):4848-4853
Tailoring the density of random single-walled carbon nanotube (SWCNT) networks is of paramount importance for various applications, yet it remains a major challenge due to the insufficient catalyst activation in most growth processes. Here we report on a simple and effective method to maximise the number of active catalyst nanoparticles using catalytic chemical vapor deposition (CCVD). By modulating short pulses of acetylene into a methane-based CCVD growth process, the density of SWCNTs is dramatically increased by up to three orders of magnitude without increasing the catalyst density and degrading the nanotube quality. In the framework of a vapor-liquid-solid model, we attribute the enhanced growth to the high dissociation rate of acetylene at high temperatures at the nucleation stage, which can be effective in both supersaturating the larger catalyst nanoparticles and overcoming the nanotube nucleation energy barrier of the smaller catalyst nanoparticles. These results are highly relevant to numerous applications of random SWCNT networks in next-generation energy, sensing and biomedical devices.  相似文献   

10.
通过高温焙烧和氢氟酸瞬间蚀刻修饰堇青石蜂窝陶瓷骨架和孔壁表面结构,采用XRD、SEM、TEM表征修饰前后结构和形貌变化,探究陶瓷结构对机械强度、碳纳米管形貌结构及复合载体性质的影响,考察Pd/CNTs@CHC-HFn催化剂催化聚苯乙烯(PS)加氢性能及催化剂用量与加氢度的关系。结果表明,高温焙烧消除了骨架内部孔道,陶瓷表面变得平整密实;瞬间蚀刻增大了表面粗糙度,易于CNTs在表面生长,但蚀刻次数增加,导致蚀刻由表面向骨架内部侵入、CNTs在骨架内部生长,降低载体的机械强度。CNTs@CHC-HFn载体表面的CNTs可显著提高复合催化剂的加氢性能,其中加氢活性位Pd分布均匀,平均粒径为3.6 nm,当催化剂用量为3.0 g cat·(g PS)-1时,其中含0.378 g CNTs和0.054 g Pd,反应6 h加氢度可达100%。  相似文献   

11.
This paper investigates the influence of the catalyst support type on mass transport and reaction rate for the case of hydrogenation of α-methylstyrene to cumene in a gas inducing stirred slurry reactor and in a slurry bubble column. The reaction is carried out in the presence of 3% Pd/carbon and 3% Pd/silica catalyst particles. The lyophobicity of the two catalyst supports in the cumene slurry is found to be similar. The overall rate of the hydrogenation reaction is described by the classical transport and reaction resistances-in-series model. The rate of gas-to-liquid mass transfer is somewhat larger during reaction than without reaction. This enhanced mass transfer points to particle-to-bubble adhesion as a result of the relative affinity of both catalyst supports to the gas phase. The observed reaction enhancements are similar for both Pd/carbon and Pd/silica catalyst/cumene slurries.  相似文献   

12.
Hydrogenation of a series of substituted nitro compounds such as 2-,3-,4-nitroanisole, 2-,3-,4-nitrotoluene, 2,4-dinitrobenzene and 2,4-dinitrotoluene has been studied in supercritical carbon dioxide, scCO2 (two phases), and ethanol (three phases) with a 5 wt.% carbon supported platinum catalyst. The solubility of these compounds in scCO2 has also been examined in the presence and absence of hydrogen. The solubility of those nitro compounds increases with increasing CO2 pressure but decreases with the presence of hydrogen. The solubility is in the order of nitrotoluene > nitroanisole > dinitrotoluene, dinitrobenzene. Although the total conversion obtained with hydrogenation in scCO2 is similar to that in ethanol, the selectivity to amino products is higher in the former reaction medium, indicating that scCO2 is an ideal medium for the production of amino compounds with hydrogenation of nitro substrates using conventional supported metal catalysts.  相似文献   

13.
A simple model for the gas-phase synthesis of carbon nanotubes on iron catalyst particles has been developed. It includes a growth model for the catalyst particles and describes nanotube growth processes through carbon monoxide disproportionation and hydrogenation. Models for particle-particle interactions and sintering are also included. When carbon arrives at a catalyst particle it can either dissolve in the particle until a saturation limit is reached, or form a graphene layer on the particle, or go on to form a nanotube. Two models for incipient nanotube growth are considered. The first allows nanotubes to form once a catalyst particle reaches the saturation condition. The second only allows nanotubes to form on the collision of two saturated particles. The particle system is solved using a multivariate stochastic solver coupled to the gas-phase iron chemistry using an operator splitting algorithm. Comparison with experimental data gives a good prediction of the nanotube length, and reasonable values of catalyst particle diameter and nanotube diameter. A parametric study is presented in which the carbon monoxide reaction rate constants are varied, as is the fraction of carbon allowed to form nanotubes relative to surface layers. The assumptions of the coagulation and sintering models are also discussed.  相似文献   

14.
It was difficult to obtain high degree of hydrogenation of hydroxyl‐terminated liquid nitrile rubber (HTBN) by using homogeneous noble metal catalyst because the hydroxyl (? OH) in HTBN was likely to cause catalyst poisoning. In this study, with hexamethyl disilylamine protecting ? OH, a good yields of hydrogenated HTBN was synthesized through the use of homogeneous metal catalyst. The effects of catalyst concentration, reaction time, hydrogen pressure, and temperature on the hydrogenation of HTBN were investigated and obtained the following optimum process parameter values: catalyst mass fraction of 0.8%, reaction time of 8 h, pressure of 1.6 MPa, and temperature of 100°C. Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy were used to characterize the hydrogenation product of the protected HTBN, indicating that under certain conditions a high degree of hydrogenation of HTBN can be achieved. Only the carbon–carbon double bonds (C?C), not the ? CN bonds, are subject to hydrogenation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Direct synthesis of aromatics from carbon dioxide hydrogenation was investigated in a single stage reactor using hybrid catalysts composed of iron catalysts and HZSM-5 zeolite. Carbon dioxide was first converted to CO by the reverse water gas shift reaction, followed by the hydrogenation of CO to hydrocarbons on iron catalyst, and finally the hydrocarbons were converted to aromatics in HZSM-5. Under the operating conditions of 350°C, 2100 kPa, and CO2/H5 = 1/2, the maximum aromatic selectivity obtained was 22% with a CO2 conversion of 38% using fused iron catalyst combined with the zeolite. Together with the kinetic studies, thermodynamic analysis of the CO2 hydrogenation was also conducted. It was found that unlike Fischer Tropsch synthesis, the formation of hydrocarbons from CO2 may not be thermodynamically favored at higher temperatures.  相似文献   

16.
以糠醇为碳源,在酸性中孔模板剂MSU-S上缩合,合成具有中孔结构碳材料(MC),通过浸渍法合成Pt/MC催化剂。采用XRD、BET、SEM和TEM等手段对MC和Pt/MC进行表征,MC富含中孔,有效分散Pt纳米粒子并在反应过程中稳定Pt。研究Pt/MC对3,4-二氯硝基苯催化加氢反应的催化性能,在3,4-二氯硝基苯 1 mmol、催化剂用量100 mg、乙醇5 mL、反应温度30 ℃、常压氢气和反应时间6 h条件下,3,4-二氯硝基苯转化率达100%,3,4-二氯苯胺选择性达99.7%,Pt/MC重复使用5次,催化性能保持不变。  相似文献   

17.
The commercially available copy papers and pure papers have been adopted to synthesize carbon nanomaterials. It is found that carbon nanocoils (CNCs) are efficiently synthesized on the copy paper substrates using Fe2(SO4)3/SnCl2 catalyst by a thermal chemical vapor deposition method, while only carbon nanotubes (CNTs) are obtained on the pure paper substrate using the same process. It is evidenced that the particles of calcium carbonate existing in copy paper aggregate catalyst and adsorb more sulfur elements which promote the growth of CNCs. In addition, CNCs can successfully grow out from the pure paper by adding calcium carbonate.  相似文献   

18.
张丽丽 《工业催化》2014,22(6):473-477
为了开发苯酚加氢制环己酮高效催化剂,将脲在550 ℃高温聚合,制备了片层状氮化碳催化剂载体g-CN;负载钯纳米粒子后,得到Pd/g-CN催化剂。采用红外光谱、X射线粉末衍射、透射电镜和X射线光电子能谱对催化剂进行表征。将Pd/g-CN催化剂用于催化苯酚水相加氢,考察了不同载体和反应温度对催化性能的影响,并对催化剂重复使用性能进行研究。结果表明,载体g-CN含有大量的含N基团,能有效稳定金属纳米粒子,从而获得粒径较小、分散较好的Pd纳米粒子;同时,g-CN具有较强碱性,有利于苯酚的吸附,可提高苯酚的反应速率和环己酮选择性。采用负载Pd质量分数2%的Pd/g-CN催化剂,在反应温度80 ℃、反应压力0.1 MPa、n(Pd)∶n(苯酚)=0.02、苯酚1 mmol、水3 mL和反应时间3 h条件下,苯酚可完全转化,环己酮选择性高达99%。Pd/g-CN催化剂制备工艺简单,原料价廉,催化性能优异。  相似文献   

19.
以NaBH4对疏水活性炭进行处理,采用等体积浸渍法制备疏水活性炭负载掺杂助剂Fe的Ni基催化剂,用于苯酐液相选择性加氢制苯酞,考察Ni含量和活性炭处理对催化剂性能的影响。结果表明,疏水活性炭经NaBH4处理后制备的15%Ni-Fe/C催化剂对苯酐加氢表现出很好的催化性能,在180 ℃、4.0 MPa、苯酐5.0 g、催化剂用量以Ni占原料质量的1%计和甲苯50 mL条件下,苯酐转化率为100%,苯酞选择性为95.2%,催化剂重复使用5次,仍保持很好的活性和选择性。  相似文献   

20.
考察了MnO2对CO2加氢直接合成二甲醚催化剂Cu-ZnO-A12O3/HZSM-5的影响.采用固定床反应装置对CO2加氢直接合成二甲醚的活性进行考察,并运用XRD、HZ-TPR技术对催化剂结构及表面性质进行研究.实验结果表明,催化剂中加入MnO2能显著提高Cu-ZnO-Al2O3/HZM-5催化剂的稳定性,促进催化剂...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号