首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For manufacturing thermally stable electric heating composite films, a sulfonated poly(1,3,4-oxadiazole) (sPOD) was synthesized and it was composited with pristine MWCNT of 0.1–10.0 wt% by an ultrasonicated solution mixing and casting. SEM images revealed that the pristine MWCNTs were dispersed well in the composite matrix via π–π interaction between the MWCNTs and the aromatic rings of sPOD backbone. The electrical resistivity of the composite films decreased considerably from ∼109 Ω cm to ∼100 Ω cm with the increment of the MWCNT content by forming a percolation threshold at ∼0.026 wt%. The composite films with 5.0–10.0 wt% MWCNT contents, which had sufficiently low electrical resistivity of ∼103–100 Ω cm, exhibited excellent electric heating performance by attaining high maximum temperatures as well as electric energy efficiency. Since the dominant thermal decomposition of the composite films took place at ∼500 °C, sPOD/MWCNT composite films with low electrical resistivity could be used for high performance electric heating materials for advanced applications.  相似文献   

2.
Au intermediate ZnO (ZAZ) thin films were prepared by radio frequency and direct current magnetron sputtering on glass substrates and then vacuum annealed. The thickness of each layer of the ZAZ films was set at 50 nm, 3 nm, and 47 nm, respectively. The structural, electrical, and optical properties of ZAZ films were investigated with respect to the variation of annealing temperature.As-deposited AZO films showed X-ray diffraction peaks corresponding to ZnO (002) and Au (111) planes and those peak intensities increased with post-deposition vacuum annealing. The optical and electrical properties of the films were strongly influenced by post-deposition annealing. Although the optical transmittance of the films deteriorated with an Au interlayer, as-deposited ZAZ films showed a low resistivity of 2.0 × 10−4 Ω cm, and the films annealed at 300 °C had a lower resistivity of 9.8 × 10−5 Ω cm. The work function of the films increased with annealing temperature, and the films annealed at 300 °C had a higher work function of 4.1 eV than the films annealed at 150 °C. The experimental results indicate that vacuum-annealed ZAZ films are attractive candidates for use as transparent electrodes in large area electronic applications such as solar cells and large area displays.  相似文献   

3.
《Vacuum》2012,86(4):483-486
Transparent conducting Titanium-doped zinc oxide thin films (TZO) with high transparency and relatively low resistivity were firstly deposited on water-cooled polyethylene terephthalate (PET) substrates at room temperature by DC magnetron sputtering. The microstructure, optical and electrical properties of the deposited films were investigated and discussed. The XRD patterns show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity decreases when the sputtering power increases from 45 W to 60 W. However, as the puttering power continue increases from 60 W to 90 W, the electrical resistivity increases rapidly. When the puttering power is 60 W, the films deposited on PET substrate have the lowest resistivity of 4.72 × 10−4 Ω cm and a relatively high transmittance of above 92% in the visible range.  相似文献   

4.
Transparent conducting Titanium-doped zinc oxide thin films (TZO) with high transparency and relatively low resistivity were firstly deposited on water-cooled polyethylene terephthalate (PET) substrates at room temperature by DC magnetron sputtering. The microstructure, optical and electrical properties of the deposited films were investigated and discussed. The XRD patterns show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity decreases when the sputtering power increases from 45 W to 60 W. However, as the puttering power continue increases from 60 W to 90 W, the electrical resistivity increases rapidly. When the puttering power is 60 W, the films deposited on PET substrate have the lowest resistivity of 4.72 × 10−4 Ω cm and a relatively high transmittance of above 92% in the visible range.  相似文献   

5.
Thin films of Al, Sc-co-doped ZnO varying with Sc-contents were sputtered on the glass substrate. X-ray diffraction (XRD) of the films revealed wurtzite crystals that were confirmed through the analysis of high resolution transmission electron microscopy (HRTEM). With increasing the Sc-content from 0 to 2.37 wt.% in the films, the optical energy band gap (Eg) was estimated to decrease from 3.25 to 3.20 eV, and the electrical resistivity (Ω cm) decreased from 3.8 × 10− 3 to 1.3 × 10− 3. The decrease in resistivity may be ascribed to electrons tunneling through the horizontal stacking faults induced by Sc-dopants in the films.  相似文献   

6.
The influence of annealing in nitrogen atmosphere on the structure, optical and electrical properties of cadmium selenide (CdSe) thin films deposited by chemical bath deposition (CBD) onto glass substrates was studied. The samples were annealed in nitrogen atmosphere at various temperatures. A transition from metastable nanocrystalline cubic to stable polycrystalline hexagonal phase has been observed after annealing. The as-deposited CdSe thin films grow in the nanocrystalline cubic phase with optical band gap 1.93 eV. The electrical resistivity of the thin films has been measured in order of 106 Ω cm. The activation energy of the samples has been found to be 0.26–0.19 eV at low temperature region, and 0.36–0.56 eV at high temperature region. It was also found that the activation energy and the resistivity of the films decrease with the increasing annealing temperature.  相似文献   

7.
Nickel oxide thin films of various thicknesses were grown on glass substrates by dc reactive magnetron sputtering technique in a pure oxygen atmosphere with sputtering power of 150 W and substrate temperature of 523 K. Crystalline properties of NiO films as a function of film thickness were investigated using X-ray diffraction. XRD analysis revealed that (200) is the preferred orientation and the orientation of the films changed from (200) to (220) at film thickness of 350 nm. The maximum optical transmittance of 60% and band gap of 3.82 eV was observed at the film thickness of 350 nm. The lowest electrical resistivity of 5.1 Ω cm was observed at a film thickness of 350 nm, thereafter resistivity increases with film thickness.  相似文献   

8.
Ga–F codoped ZnO (GFZO) thin films were firstly prepared on polycarbonate (PC) substrates by MF magnetron sputtering and the results were compared in detail with the Al doped ZnO (AZO) thin films. The influence of dopants on the structural and optoelectric properties of ZnO films was studied. X-ray diffraction and scanning electron microscopy results show that the cracks formed in both GFZO and AZO films due to the high residual stress, originating from the different thermal expansion coefficients between film/substrate. However, the GFZO films show better crystallinity and deliver larger grain size than AZO. A relative low resistivity of 1.4 × 10−3 Ω cm and a transmittance of 81% for the GFZO thin films are achieved, better than that of 2.3 × 10−2 Ω cm and 75% for the AZO films. The results illustrate that the combined effects of Ga–F codoping and smaller crack density can optimise the opto-electric properties of ZnO based thin films.  相似文献   

9.
S.J. Lim 《Thin solid films》2008,516(7):1523-1528
Recently, the application of ZnO thin films as an active channel layer of transparent thin film transistor (TFT) has become of great interest. In this study, we deposited ZnO thin films by atomic layer deposition (ALD) from diethyl Zn (DEZ) as a metal precursor and water as a reactant at growth temperatures between 100 and 250 °C. At typical growth conditions, pure ZnO thin films were obtained without any detectable carbon contamination. For comparison of key film properties including microstructure and chemical and electrical properties, ZnO films were also prepared by rf sputtering at room temperature. The microstructure analyses by X-ray diffraction have shown that both of the ALD and sputtered ZnO thin films have (002) preferred orientation. At low growth temperature Ts ≤ 125 °C, ALD ZnO films have high resistivity (> 10 Ω cm) with small mobility (< 3 cm2/V s), while the ones prepared at higher temperature have lower resistivity (< 0.02 Ω cm) with higher mobility (> 15 cm2/V s). Meanwhile, sputtered ZnO films have much higher resistivity than ALD ZnO at most of the growth conditions studied. Based upon the experimental results, the electrical properties of ZnO thin films depending on the growth conditions for application as an active channel layer of TFT were discussed focusing on the comparisons between ALD and sputtering.  相似文献   

10.
Y.C. Lin  C.H. Chang  P.W. Wang 《Thin solid films》2010,518(21):6055-6060
Transparent conducting oxide thin films are used as front contact material for dye-sensitized solar cells. This study investigated the effects of chromium (Cr) and vanadium (V) contents on the chemical and heat stability properties of aluminum-doped zinc oxide (AZO) thin films using pulsed direct current magnetic sputtering on Corning 1737F glass substrates. The experimental results show that Cr and V doping is useful for improving the chemical and thermal stability of AZO films. The energy gap for AZO thin films is between 3.65 and 3.69 eV. The resistivity of the AZO:Cr:V thin film was 4.23 × 10-4 Ω cm at a Cr/V ratio of 0.30/0.23 wt.%, deposition power of 150 W, working distance of 5.5 cm, substrate temperature of 473 K, working pressure of 0.4 Pa, and frequency of 10 kHz. This value is lesser than (and therefore superior to) the resistivity of SnO2:F (FTO) films (6.5 × 10-4 Ω cm), but greater than that of SnO2:In (ITO) thin films (1.2 × 10-4 Ω cm). The resistivity increased by about 0.27% after electrolyte etching, which is similar to the 0.16% increase observed for the ITO thin film. After a thermal cycle test at 673 K, the resistivity of the AZO:Cr:V film increased to 5.42 × 10-4 Ω cm, which is better than the resistivity of the ITO and FTO films after the same thermal cycle.  相似文献   

11.
Aluminum-doped zinc oxide films (ZnO:Al) were deposited on Si wafers and glass substrates by dc magnetron sputtering from a ZnO target mixed with 2 wt% Al2O3 for photovoltaic films. The effect of base pressure, additional oxygen, and substrate temperature were studied in detail. By dc magnetron sputtering at room temperature, the resistivity and the average transmittance in visible range was 2.3 × 10−3 Ω cm and 77.3%, respectively. And these were improved up to 3.3 × 10−4 Ω cm and 86% at the substrate temperature of 400 °C by high deposition rate and low impurity ambient. The mobility and the carrier concentration were improved by the increased preferred orientation of (002) plane and grain size of film with increasing deposition temperature. This advanced AZO film with good resistivity and transmittance can be expected as the front TCO of thin film solar cells.  相似文献   

12.
Highly boron-doped diamond films were deposited on silicon substrate by hot filament chemical vapor deposition in a gas mixture of hydrogen and methane. The chemical bonding states, surface texture, and electrical resistivity of these films were analyzed by X-ray photoelectron spectroscopy, scan electron microscope, and four-point probe method. It was found that boron dopants play an important role in the texture and chemical bonding states of the diamond films. An appropriate concentration of boron dopants (B/C ratio of 10 000 ppm) can simultaneously improve crystal quality and reduce resistivity of the diamond films. The minimum resistivity of diamond films reaches 1.12 × 10−2 Ω cm, which is applicable as electrodes.  相似文献   

13.
The n-type doped silicon thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) technique at high and low H2 dilutions. High H2 dilution resulted in n+ nanocrystalline silicon films (n+ nc-Si:H) with the lower resistivity (ρ ∼0.7 Ω cm) compared to that of doped amorphous silicon films (∼900 Ω cm) grown at low H2 dilution. The change of the lateral ρ of n+ nc-Si:H films was measured by reducing the film thickness via gradual reactive ion etching. The ρ values rise below a critical film thickness, indicating the presence of the disordered and less conductive incubation layer. The 45 nm thick n+ nc-Si:H films were deposited in the nc-Si:H thin film transistor (TFT) at different RF powers, and the optimum RF power for the lowest resistivity (∼92 Ω cm) and incubation layer was determined. On the other hand, several deposition parameters of PECVD grown amorphous silicon nitride (a-SiNx:H) thin films were changed to optimize low leakage current through the TFT gate dielectric. Increase in NH3/SiH4 gas flow ratio was found to improve the insulating property and to change the optical/structural characteristics of a-SiNx:H film. Having lowest leakage currents, two a-SiNx:H films with NH3/SiH4 ratios of ∼19 and ∼28 were used as a gate dielectric in nc-Si:H TFTs. The TFT deposited with the NH3/SiH4∼19 ratio showed higher device performance than the TFT containing a-SiNx:H with the NH3/SiH4∼28 ratio. This was correlated with the N−H/Si−H bond concentration ratio optimized for the TFT application.  相似文献   

14.
Indium tin oxide (ITO) thin films with a specific resistivity of 3.5 × 10− 4 Ω cm and average visible light transmission (VLT) of 90% have been reactively sputtered onto A4 Polyethylene terephthalate (PET), glass and silicon substrates using a remote plasma sputtering system.This system offers independent control of the plasma density and the target power enabling the effect of the plasma on ITO properties to be studied. Characterization of ITO on glass and silicon has shown that increasing the plasma density gives rise to a decrease in the specific resistivity and an increase in the optical band gap of the ITO films. Samples deposited at plasma powers of 1.5 kW, 2.0 kW and 2.5 kW and optimized oxygen flow rates exhibited specific resistivity values of 3.8 × 10− 4 Ω cm, 3.7 × 10− 4 Ω cm and 3.5 × 10− 4 Ω cm and optical gaps of 3.48 eV, 3.51 eV and 3.78 eV respectively.The increase in plasma density also influenced the crystalline texture and the VLT increased from 70 to 95%, indicating that more oxygen is being incorporated into the growing film. It has been shown that the remote plasma sputter technique can be used in an in-line process to produce uniform ITO coatings on PET with specific resistivities of between 3.5 × 10− 4 and 4.5 × 10− 4 Ω cm and optical transmission of greater than 85% over substrate widths of up to 30 cm.  相似文献   

15.
V. Anita  T. Butsuda  O. Takai 《Vacuum》2006,80(7):736-739
The mechanical and electrical properties of aluminium-doped diamond-like carbon (DLC) thin films obtained with a hybrid method combining hollow magnetron discharge sputtering and plasma-enhanced chemical vapour deposition (PECVD) are reported. The ratio between the mass flows of methane reactive gas and argon inert gas was found to have a big influence on the properties of doped DLC films. For low mass flow of methane gas the cathode surface was kept in a metallic state. By increasing methane mass flow the cathode surface became to be covered with DLC and the behaviour of the discharge changed, influencing the properties of deposited films. The lowest resistivity (10−4 Ω cm) of thin films was obtained in the metallic state of the cathode but without DLC character, as indicated by Raman measurements. The resistivity increased in the intermediate mode (0.01 Ω cm) and attained higher value (1 Ω cm) in the poisoned state of the cathode. These films presented DLC character, with D and G bands, as revealed by Raman measurements.  相似文献   

16.
The zinc selenide (ZnSe) thin films are deposited onto glass substrate using relatively simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method. The films are deposited using zinc acetate sodium selenosulphate precursors. The concentration, pH, immersion and rinsing times and number of immersion cycles have been optimized to obtain good quality ZnSe thin films. The X-ray diffraction (XRD) study and scanning electron microscopy (SEM) studies reveals nanocrystalline nature alongwith some amorphous phase present in ZnSe thin films. Energy dispersive X-ray (EDAX) analysis shows that the films are Se deficient. From optical absorption data, the optical band gap ‘Eg’ for as-deposited thin film was found to be 2.8 eV and electrical resistivity in the order of 107 Ω cm.  相似文献   

17.
Huafu Zhang  Hanfa Liu 《Vacuum》2010,84(6):833-9072
Transparent conducting zirconium-doped zinc oxide (ZnO:Zr) films were deposited on quartz substrates by direct current (DC) magnetron sputtering at room temperature. The influence of post-annealing temperature on the structural, morphological, electrical and optical properties of ZnO:Zr films were investigated. When annealing temperature increases from room temperature to 573 K, the resistivity decreases obviously due to an improvement of the crystallinity. However, with further increase in annealing temperature, the crystallinity deteriorates leading to an increase in resistivity. The films annealed at the optimum annealing temperature of 573 K in vacuum have the lowest resistivity of 9.8 × 10−4 Ω cm and a high transmittance of above 92% in the visible range.  相似文献   

18.
The relationship between two techniques developed for improving the resistivity distribution on the substrate surface in transparent conducting Al-doped ZnO (AZO) thin films prepared at a temperature of 200 °C by dc magnetron sputtering depositions (dc-MSD) using various sintered AZO targets has been investigated. One improvement method superimposes an rf component onto the dc-MSD (rf + dc-MSD). The other improvement method uses conventional dc-MSD with a low resistivity AZO target prepared under optimized conditions. An improvement of resistivity distribution resulted from a decrease in the resistivity of targets used in the preparation of AZO thin films by dc-MSD either with or without superimposing rf power. However, the resistivity distribution of AZO thin films resulting from depositions using rf-superimposed dc-MSD with lower-resistivity targets was not significantly improved over that of AZO thin films prepared by conventional dc-MSD using targets with the same low resistivities. The use of rf superimposition only resulted in improved resistivity distribution in thin films when the AZO targets had a resistivity higher than around 1 × 10− 3 Ω cm. It should be noted that sintered AZO targets optimized for the preparation of AZO thin films with lower resistivity as well as more uniform resistivity distribution on the substrate surface tended to exhibit a lower resistivity.  相似文献   

19.
Mn-doped zinc oxide (ZnO:Mn) thin films with low resistivity and relatively high transparency were firstly prepared on glass substrate by direct current (DC) magnetron sputtering at room temperature. Influence of film thickness on the properties of ZnO:Mn films was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. As the thickness increases from 144 to 479 nm, the crystallite size increases while the electrical resistivity decreases. However, as the thickness increases from 479 to 783 nm, the crystallite size decreases and the electrical resistivity increases. When film thickness is 479 nm, the deposited films have the lowest resistivity of 2.1 × 10− 4 Ω cm and a relatively high transmittance of above 84% in the visible range.  相似文献   

20.
Indium gallium zinc oxide (IGZO) transparent semiconductor thin films were prepared by KrF excimer laser annealing of sol–gel derived precursor films. Each as-coated film was dried at 150 °C in air and then annealed using excimer laser irradiation. The influence of laser irradiation energy density on surface conditions, optical transmittances, and electrical properties of laser annealed IGZO thin films were investigated, and the physical properties of the excimer laser annealed (ELA) and the thermally annealed (TA) thin films were compared. Experimental results showed that two kinds of surface morphology resulted from excimer laser annealing. Irradiation with a lower energy density (≤250 mJ cm−2) produced wavy and irregular surfaces, while irradiation with a higher energy density (≥350 mJ cm−2) produced flat and dense surfaces consisting of uniform nano-sized amorphous particles. The explanation for the differences in surface features and film quality is that using laser irradiation energy to form IGZO thin films improves the film density and removes organic constituents. The dried IGZO sol–gel films irradiated with a laser energy density of 350 mJ/cm2 had the best physical properties of all the ELA IGZO thin films. The mean resistivity of the ELA 350 thin films (4.48 × 103 Ω cm) was lower than that of TA thin films (1.39 × 104 Ω cm), and the average optical transmittance in the visible range (90.2%) of the ELA 350 thin films was slightly higher than that of TA thin films (89.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号