首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminium nitride films were deposited on fused silica by reactive dc magnetron sputtering from an Al-target in an Ar/N2 atmosphere. In-situ measurements during deposition provided data concerning mechanical stresses inherent to the growing thin films. By variation of both the gas composition (Ar, N2) and the total gas flow in the vacuum chamber, the occuring intrinsic stresses could be shifted in magnitude and direction. Stress values of the AIN films ranged from ?0.9 GPa (compressive) to +1.2 GPa (tensile) when the Ar/N2 ratio was varied between 3:1 and 1:3 for the different total gas flows of 50 sccm, 100 sccm, and 200 sccm (corresponding to total gas pressures of approximately 2 × 10?1 Pa, 4 × 10?1 Pa, and 8 × 10?1 Pa respectively). Investigations of optical and structural film properties were carried out and the results were related to the observed film stress.  相似文献   

2.
Silicon carbide (SiC) thin films were prepared by hot-wire chemical vapor deposition in a CH4 gas flow rate of 1 sccm, and the influence of the gas flow rates of SiH4 and H2 gases on the film structure and properties were investigated. In the case of a H2 gas flow rate below 100 sccm, the SiC:H films obtained in SiH4 gas flow rates of 3 and 4 sccm were amorphous. On the other hand, when the H2 gas flow rate was above 150 sccm, SiH4 gas flow rates of 4 and 3 sccm resulted in a Si-crystallite-embedded amorphous SiC:H film and a nanocrystalline cubic SiC film, respectively. It was found that gas flow rates were important parameters for controlling film structure.  相似文献   

3.
The amorphous SiCN coatings have been plasmachemically (PECVD) deposited onto silicon substrates using the heksamethyldisylazan as the basic precursor. The effect of the deposition temperature on the structure, chemical composition, and mechanical properties of the coatings has been studied. It has been found that at temperatures below 400°C the deposition of hydrogenated amorphous SiCN (a-SiCN:H) coatings, whose hardness does not exceed 23 GPa, takes place. At the further increase of the temperature the distribution of the Si–C, Si–N, and C–N strong bonds in coatings does not practically change, while the number of C–H, Si–H and N–H weak hydrogen bonds decreases. As a result of such a redistribution of chemical bonds, at the temperature 600–700°C a-SiCN coatings are deposited with hardness up to 32 GPa. The annealing in vacuum at 1200°C is shown not to noticeably affect the structure, hardness, and elastic modulus of a-SiCN coatings.  相似文献   

4.
Tao Zhou  Xun Cai  Paul K. Chu 《Vacuum》2009,83(7):1057-1825
The influence of the nitrogen partial pressure on the mechanical properties of (Ti,Al)N films deposited by DC reactive magnetron sputtering using a Ti-Al mosaic target at a substrate bias of −100 V is investigated. Nanoindentation tests reveal that with increasing N2 partial pressure, the film hardness and elastic modulus increase initially and then decrease afterwards. The maximum hardness and elastic modulus are 43.4 GPa and 430.8 GPa, respectively. The trend is believed to stem from the variations in the grain size and preferential orientation of the crystals in the (Ti,Al)N films fabricated at varying N2 partial pressure. The phenomenon is confirmed by results acquired using glancing angle X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS).  相似文献   

5.
A series of nanogranular Ti90Cr10 thin films have been fabricated by pulsed-laser deposition on Si substrates at different temperatures. The crystal structure and mechanical properties of these films were investigated. The X-ray diffraction and transmission electron microscope images with selected area diffraction showed that the structure of as-prepared films is dependent on film thickness and deposition temperature. It was found that the Ti90Cr10 films consisted of fine hexagonal close packed microstructure with columnar grains, while body close-packed cubic structure of Cr films are composed of irregular grains, meanwhile, a chromium disilicide (CrSi2) layer formed in the interface between the substrate and Cr films which deposited at temperature of greater than 600 °C. The crystalline and columnar grains improved with an increase of the thickness of the films and an optimum microstructure is obtained under the present experimental condition of about 50 nm thickness and deposited temperature of 500 °C for Ti90Cr10 films. Deposited at 300 °C, the Ti90Cr10 films have hardness of 12.7 GPa and elastic modulus of 174.6 GPa. Improved to 600 °C the sample shows higher hardness of 13.1 GPa and higher elastic modulus of 183.2 GPa. Using Benjamin-Weaver model, adhesion shearing force can be calculated as 34.9 MPa for 300 °C Ti90Cr10 film while higher value of 44.4 MPa for higher temperature of 600 °C.  相似文献   

6.
Hydrogenated carbon nitride (a-CN x H films) was deposited on n-type single-crystal Si (100) by direct current radio frequency plasma-enhanced chemical vapor deposition (DC-RF-PECVD), under the working pressure of 5.0–17.0 Pa, using the CH4 and N2 as feedstock. The composition and surface morphology of the a-CN x H films were characterized by means of Raman spectroscopy and atomic force microscopy, while the Young’s modulus, elastic recovery, adhesion strength, and tribological properties were evaluated using nano-indentation, scratch test and friction test system. It was found that the surface roughness and Raman spectra peak intensity ratio I D/I G of the films increased with the increase of working pressure, while the Young’s modulus, elastic recovery and adhesion strength of the films significantly decreased. Moreover, the tribological properties of the films also varied with the working pressure. The wear life sharply increased with the increase of working pressure from 5.0 Pa to 7.5 Pa, further, an increase in the deposition pressure led to a gradual decrease in the wear life, consequently, the a-CN x H film deposited at 7.5 Pa exhibited the longest wear life. The deposition pressure seemed to have slight effect on the average friction coefficients, whereas the surface roughness and adhesion strength have deteriorated with increasing deposition pressure.  相似文献   

7.
The mechanical properties and the scratch resistance of titanium oxide (TiO2) thin films on a glass substrate have been investigated. Three films, with crystalline (rutile and anatase) and amorphous structures, were deposited by the filtered cathodic vacuum arc deposition technique on glass, and characterized by means of nanoindentation and scratch tests. The different damage modes (arc-like, longitudinal and channel cracks in the crystalline films; Hertzian cracks in the amorphous film) were assessed by means of optical and focused ion beam microscopy. In all cases, the deposition of the TiO2 film improved the contact-mechanical properties of uncoated glass. Crystalline films were found to possess a better combination of mechanical properties (i.e. elastic modulus up to 221 GPa, hardness up to 21 GPa, and fracture strength up to 3.6 GPa) than the amorphous film. However, under cyclic sliding contact above the critical fracture load, the amorphous film was found to withstand a higher number of cycles. The results are expected to provide useful insight for the design of optical coatings with improved contact-damage resistance.  相似文献   

8.
We have performed the ab initio calculations based on density functional theory to investigate the B3–B1 phase transition and mechanical properties of ZnS. The elastic stiffness coefficients, C11, C12, C44, bulk modulus, Kleinman parameter, Shear modulus, Reuss modulus, Voigt modulus and anisotropy factor are calculated for two polymorphs of ZnS: zincblende (B3) and rocksalt (B1). Our results for the structural parameters and elastic constants at equilibrium phase are in good agreement with the available theoretical and experimental values. Using the enthalpy–pressure data, we have observed the B3 to B1 structural phase transition at 18.5 GPa pressure. In addition to the elastic coefficients under normal conditions, we investigate the pressure dependence of mechanical properties of both phases: up to 65 GPa for B1-phase and 20 GPa for B3-phase.  相似文献   

9.
《Vacuum》2012,86(1):82-86
Nanocrystalline silicon thin films (nc-Si:H) were deposited using He as the dilution gas instead of H2 and the effect of the operating pressure and rf power on their characteristics was investigated. Especially, operating pressures higher than 4 Torr and a low SiH4 containing gas mixture, that is, SiH4(3 sccm)/He(500 sccm) were used to induce high pressure depletion (HPD) conditions. Increasing the operating pressure decreased the deposition rate, however at pressures higher than 6 Torr, crystallized silicon thin films could be obtained at an rf power of 100 W. The deposition of highly crystallized nc-Si:H thin film was related to the HPD conditions, where the damage is decreased through the decrease in the bombardment energy at the high pressure and the crystallization of the deposited silicon thin film is increased through the increased hydrogen content in the plasma caused by the depletion of SiH4. When the rf power was set at a fixed operating pressure of 6 Torr, HPD conditions were obtained in the rf power range from 80 to 100 W, which was high enough to dissociate SiH4 fully, but meantime low enough not to damage the surface by ion bombardment. At 6 Torr of operating pressure and 100 W of rf power, the nc-Si:H having the crystallization volume fraction of 67% could be obtained with the deposition rate of 0.28 nm/s.  相似文献   

10.
Nanocrystalline silicon thin films (nc-Si:H) were deposited using He as the dilution gas instead of H2 and the effect of the operating pressure and rf power on their characteristics was investigated. Especially, operating pressures higher than 4 Torr and a low SiH4 containing gas mixture, that is, SiH4(3 sccm)/He(500 sccm) were used to induce high pressure depletion (HPD) conditions. Increasing the operating pressure decreased the deposition rate, however at pressures higher than 6 Torr, crystallized silicon thin films could be obtained at an rf power of 100 W. The deposition of highly crystallized nc-Si:H thin film was related to the HPD conditions, where the damage is decreased through the decrease in the bombardment energy at the high pressure and the crystallization of the deposited silicon thin film is increased through the increased hydrogen content in the plasma caused by the depletion of SiH4. When the rf power was set at a fixed operating pressure of 6 Torr, HPD conditions were obtained in the rf power range from 80 to 100 W, which was high enough to dissociate SiH4 fully, but meantime low enough not to damage the surface by ion bombardment. At 6 Torr of operating pressure and 100 W of rf power, the nc-Si:H having the crystallization volume fraction of 67% could be obtained with the deposition rate of 0.28 nm/s.  相似文献   

11.
This work examines mechanical properties of 50–300 nm gold thin films deposited onto micrometer-thick flexible polymer substrates by means of tensile testing of the film–substrate system and modeling. The film properties are extracted from mechanical testing of the film–substrate system and modeling of the bimaterial. Unlike materials in bulk geometry, the film elastic modulus and yield strength present an important dependence with film thickness, with modulus and yield strength of about 520 and 30 GPa, respectively, for the thinner films and decreasing toward the bulk value as the film thickness increases. The relation between grain size, film thickness, and yield strength is examined. Finite element analysis provides further insight into the stress distribution in the film–substrate system. L. Llanes—MS student at ITM, Merida, Mexico.  相似文献   

12.
ITO films were deposited onto glass substrates by ion beam assisted deposition method. The oxygen ions were produced using a Kaufman ion source. The oxygen flow was varied from 20 until 60 sccm and the effect of the oxygen flow on properties of ITO films has been studied. The structural properties of the film were characterized by X-ray diffraction and atomic force microscopy. The optical properties were characterized by optical transmission measurements and the optical constants (refractive index n and extinction coefficient k) and film thickness have been obtained by fitting the transmittance using a semi-quantum model. The electrical properties were characterized by Hall effect measurements. It has been found that the ITO film with low electrical resistivity and high transmittance can be obtained with 40 sccm oxygen flow (the working pressure is about 2.3 × 10− 2 Pa at this oxygen flow).  相似文献   

13.
In an effort to increase the crystalline fraction of silicon films directly deposited on a glass substrate by hot-wire chemical vapor deposition, the effect of HCl addition was studied. The silicon film was deposited on a glass substrate at 320 °C under a reactor pressure of 1333 Pa at the wire temperature of 1600 °C with 10%SiH4–90%He at a fixed flow rate 100 standard cubic centimeter per minute (sccm) and HCl varied at 0, 10, 16 and 28 sccm. With increasing HCl, the crystalline fraction of silicon was increased as revealed by Raman spectra but the growth rate was decreased.  相似文献   

14.
The BCN films were synthesized on Si (110) wafers by using dual ion beam sputtering deposition from boron carbide target. The influences of ion assist source energy and N2 relative flow rate on the surface roughness, mechanical properties and chemical bonding structure of BCN films were investigated systematically. The surface roughness was measured using non-contact optical surface profilometer and the mechanical properties of BCN films were evaluated with nano-indenter. The BCN films were characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. The results showed that the BCN films' surface roughness varied in the range of 5–15 nm, and their hardness and reduced elastic modulus fluctuated in the scope of 18–29 GPa and 192–229 GPa, respectively. When the BCN films' surface roughness varied in the range of 8–12 nm, the values of hardness and reduced elastic modulus were fluctuated slightly. The BCN films with the smoothest surface (Ra = 5 nm) and the highest hardness of 28 GPa were obtained at the ion assist source energy of 200 eV and the N2 relative flow rate of 50%. The BCN films were amorphous and contained several bonding states such as B–N, B–C and C–N with B–C–N hybridization.  相似文献   

15.
张学华  曹猛  乔林  杨瑾  刘桐  李德军 《真空》2007,44(2):40-43
本研究选择钽和钒的氮化物作为个体层材料,利用超高真空射频磁控溅射系统制备TaN、VN及一系列的TaN/VN多层薄膜。通过XRD,纳米力学测试系统分析了该体系合成中工作气压对多层膜结构与机械性能的影响。结果表明:多层膜的纳米硬度值都高于两种个体材料混合相的硬度值;当工作气压为0.2Pa时,结晶出现多元化,多层膜体系的硬度、弹性模量、应力均达到最佳效果,最大硬度达到31GPa。多层膜的机械性能改善明显与工作气压的变化有直接的联系。证明了通过选择合适的工作气压条件,合成具有高硬度的纳米多层膜是可以实现的。  相似文献   

16.
Dc reactive sputtering was successfully implemented to deposit titanium oxynitride thin films using a titanium metallic target, argon, nitrogen and water vapour as reactive gases. The nitrogen partial pressure was kept constant during every deposition whereas that of the water vapour was systematically changed from 0 to 0.1 Pa. The study aims at comparing the structural and mechanical properties of the coatings deposited at room temperature (293 K) and at 673 K. Surface morphology of the film was examined by atomic force microscopy and showed different aspects according to the growth temperature. Topography mainly depends on the amount of water vapour introduced during the deposition process. Some significant changes of the crystallographic structure, due to the high substrate temperature were correlated with the evolution of the surface aspect and roughness parameters. Determination of the phase occurrence by X-ray diffraction was also carried out and appeared to be a significant parameter in understanding the evolution of mechanical properties like nanohardness (H n) and Young’s modulus (E). H n and E values obtained by nanoindentation ranged from 16.5 to 7 GPa and from 240 to 100 GPa, respectively. For both temperatures, mechanical properties of titanium oxynitride thin films were notably reduced as a function of the water vapour supply, especially for partial pressures higher than 4 × 10−2 Pa. These mechanical behaviours were correlated and discussed with the phase occurrence and the amorphous structure of titanium oxynitride thin films.  相似文献   

17.
The investigation of structure and properties of Cr-B and Cr-B-N films deposited by direct current magnetron sputtering of CrB2 target in argon and argon-nitrogen environments, respectively is presented. The nitrogen partial pressure was kept at 10, 15, and 25% of the total pressure. The microstructure, phase and chemical composition of Cr-B-(N) films were studied by means of X-ray diffraction, transmission- and scanning-electron microscopy, X-ray photoelectron spectroscopy, electron probe microanalysis and secondary neutral mass-spectrometry. The films were characterized in terms of their electrical resistivity, optical reflectivity and transmittance. Measurements of hardness and elastic modulus were performed by depth sensing nanoindentation. The results obtained show that the films deposited in pure Ar had a hexagonal AlB2-type structure with crystallites, 15-17 nm in lateral size, elongated in the direction of film growth. The Cr-B-N films consisted of nanocrystalline nc-CrB2 and amorphous a-BN phases. As the nitrogen content in films was raised, the volume fraction of the nc-CrB2 phase decreased and a-BN phase increased. When nitrogen was added to the gas discharge during deposition, the nc-CrB2 crystallite size decreased down to 3-5 nm. Without nitrogen, the films exhibited a columnar morphology. Nitrogen introduction suppressed the columnar growth of films because formation of a-BN intergranular layers. The films deposited under optimal parameters showed hardness in the range of 36-43 GPa and Young's modulus below 300 GPa. For all films, electrical resistivity values between approximately 200 and 700 µΩ cm were recorded.  相似文献   

18.
Nanocrystalline diamond (NCD) coatings with thickness of about 3 μm were grown on silicon substrates at four deposition temperatures ranging from 653 to 884 °C in CH4/H2/Ar microwave plasmas. The morphology, structure, chemical composition and mechanical and surface properties were studied by means of Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD), Raman spectroscopy, nanoindentation and Water Contact Angle (WCA) techniques. The different deposition temperatures used enabled to modulate the chemical, structural and mechanical NCD properties, in particular the grain size and the shape. The characterization measurements revealed a relatively smooth surface morphology with a variable grain size, which affected the incorporated hydrogen amount and the sp2 carbon content, and, as a consequence, the mechanical properties. Specifically, the hydrogen content decreased by increasing the grain size, whereas the sp2 carbon content increased. The highest values of hardness (121 ± 25 GPa) and elastic modulus (1036 ± 163 GPa) were achieved in NCD film grown at the lowest value of deposition temperature, which favored the formation of elongated nanocrystallites characterized by improved hydrophobic surface properties.  相似文献   

19.
The chemical, structural, mechanical and optical properties of thin aluminum oxide films deposited at room temperature (RT) and 800 °C on (100) Si and Si-SiO2 substrates by pulsed laser deposition and plasma enhanced chemical vapor deposition are investigated and compared. All films are smooth and near stoichiometric aluminum oxide. RT films are amorphous, whereas γ type nano-crystallized structures are pointed out for films deposited at 800 °C. A dielectric constant of ∼ 9 is obtained for films deposited at room temperature and 11-13 for films deposited at 800 °C. Young modulus and hardness are in the range 116-254 GPa and 6.4-28.8 GPa respectively. In both cases, the results show that the deposited films have very interesting properties opening applications in mechanical, dielectric and optical fields.  相似文献   

20.
The mechanical properties of amorphous silicon carbonitride (a-SiC x N y ) films with various nitrogen content (y = 0–40 at.%) were investigated in situ at elevated temperatures up to 650 °C in inert atmosphere. A SiC film was measured also at 700 °C in air. The hardness and elastic modulus were evaluated using instrumented nanoindentation with thermally stable cubic boron nitride Berkovich indenter. Both the sample and the indenter were separately heated during the experiments to temperatures of 300, 500, and 650 °C. Short duration high temperature creep tests (1200 s) of the films were also carried out. The results revealed that the room temperature hardness and elastic modulus deteriorate with the increase of the nitrogen content. Furthermore, the hardness of both the a-SiC and the a-SiCN films with lower nitrogen content at 300 °C drops to approx. 77 % of the corresponding room temperature values, while it reduces to 69 % for the a-SiCN film with 40 at.% of nitrogen. Further increase of temperature is accompanied with minor reduction in hardness except for the a-SiCN film with highest nitrogen content, where the hardness decreases at a much faster rate. Upon heating up to 500 °C, the elastic modulus of the a-SiCN film decreases, while it increases at 650 °C due to the pronounced effect of short-range ordering. The steady-state creep rate increases at elevated temperatures and the a-SiC exhibits slower creep rates compared to the a-SiCN films. The value of the universal constant x = 7 relating the W p/W t and H/E * was established and its applicability was demonstrated. Analysis of the experimental indentation data suggests a theoretical limit of hardness to elastic modulus ratio of 0.143.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号