首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Needle-like silicon nanowires have been grown using gold colloid as the catalyst and silane (SiH4) as the precursor by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). Si nanowires produced by this method were unique with sharpness below 3 nm. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction technique (XRD) confirmed the single crystalline growth of the Si nanowires with (111) crystalline structure. Raman spectroscopy also has revealed the presence of crystalline Si in the grown Si nanowire body. In this research, presence of a gold nanoparticle on tip of the nanowires proved vapor–liquid–solid growth mechanism.  相似文献   

2.
GaN nanostructures have been synthesized on silicon substrates using chemical vapor deposition. Prior to growth silicon substrates were engraved using stainless-steel micro-tips. Straight as well as twisted nanowires were observed along the engraved lines/regions. Straight nanowires were few tens of microns in length and the twisted ones were few microns in length with diameter variation between 30 nm and 100 nm. The electron microscopy analysis indicates that the nanowires were grown parallel to the c-axis and possible growth mechanism is described. Raman scattering indicates good quality of nanowires exhibiting intense E2(high) mode and A1(LO) mode and a huge red-shift in the mode position indicates nano-size effects. Such engraved substrates without any explicit catalyst can provide site controlled growth of nanowires and this methodology is extendable for growing nanowires of related materials.  相似文献   

3.
The growth of GaN nanowires on sapphire substrates coated with Ni or Pt catalyst was investigated to address their behavior in a vapor–liquid–solid mechanism. Our observations revealed that both the two catalysts, which led to the growth of nanowires, behave rather complex, including diffusion and re-agglomeration from the coated films to the surface of the micro crystals that is formed in an early stage of growth by vapor–solid mechanism. GaN nanowires have a diameter and length of ~100 nm and several tens of micrometers, respectively, and tend to align epitaxially on the facets of the micro crystals.  相似文献   

4.
For the first time silicon nanowires have been grown on indium (In) coated Si (100) substrates using e-beam evaporation at a low substrate temperature of 300 °C. Standard spectroscopic and microscopic techniques have been employed for the structural, morphological and compositional properties of as grown Si nanowires. The as grown Si nanowires have randomly oriented with an average length of 600 nm for a deposition time of 15 min. As grown Si nanowires have shown indium nanoparticle (capped) on top of it confirming the Vapor Liquid Solid (VLS) growth mechanism. Transmission Electron Microscope (TEM) measurements have revealed pure and single crystalline nature of Si nanowires. The obtained results have indicated good progress towards finding alternative catalyst to gold for the synthesis of Si nanowires.  相似文献   

5.
ZnO nanowires were grown on a-plane GaN templates by chemical vapor deposition (CVD) without employing a catalyst. The a-plane GaN templates were pre-deposited on an r-plane sapphire substrate by metal-organic CVD. The resulting ZnO nanowires grow in angles off- related to the GaN basal plane. X-ray diffraction (XRD) spectra showed that the ZnO layer was grown with a heteroepitaxial relationship of (110)ZnO||(110)GaN. Photoluminescence spectra measured at 17 K exhibited near-band-edge emission at 372 nm with a full width at half maximum of 10 nm. The growth mechanism on a-GaN was the Volmer-Weber (VW) mode and differed from the Stranski-Krastanow (SK) mode observed for growth on c-GaN. This difference results from the higher interfacial free-energy on the a-plane between ZnO and GaN than that on the c-plane orientation.  相似文献   

6.
M. Lei 《Materials Letters》2009,63(22):1928-1930
Zinc gallate (ZnGa2O4) nanowires were directly grown on the amorphous carbon-coated silicon substrates using a facile chemical vapor deposition method without any metal catalysts. The growth mechanism can be attributed to a self-organization vapor-liquid-solid (VLS) process. The amorphous carbon layer plays an important role in the nucleation and growth process of the ZnGa2O4 nanowires. The photoluminescence (PL) of the nanowires shows a broad, strong green emission band centered at 532 nm and a weak UV emission band at 381 nm, which can be attributed to a large amount of ionized oxygen vacancies and the combination of Ga3+ ions with free electrons in coordinated oxygen vacancies, respectively.  相似文献   

7.
Germanium nanowires were grown on Au coated Si substrates at 380 °C in a high vacuum (5 × 10− 5 Torr) by e-beam evaporation of Germanium (Ge). The morphology observation by a field emission scanning electron microscope (FESEM) shows that the grown nanowires are randomly oriented with an average length and diameter of 600 nm and 120 nm respectively for a deposition time of 60 min. The nanowire growth rate was measured to be ∼ 10 nm/min. Transmission electron microscope (TEM) studies revealed that the Ge nanowires were single crystalline in nature and further energy dispersive X-ray analysis (EDAX) has shown that the tip of the grown nanowires was capped with Au nanoparticles, this shows that the growth of the Ge nanowires occurs by the vapour liquid solid (VLS) mechanism. HRTEM studies on the grown Ge nanowire show that they are single crystalline in nature and the growth direction was identified to be along [110].  相似文献   

8.
The growth of silicon oxide nanowires (SiOxNWs) was obtained by thermal process of nickel (Ni) nanoparticles (NPs) deposited on silicon (Si) wafer in mixed gases of nitrogen (N2) and hydrogen (H2). TEM analysis showed that SiOxNWs had diameters ranging from 100 to 200 nm with lengths extending up to a few μm and their structure was amorphous. SiOxNWs were grown by the reaction between Ni NPs and Si wafer and Ni NPs acted as catalysts. Ni silicides (NixSi) were also formed inside the wafer by Ni diffusion into Si wafer.  相似文献   

9.
Silicon/silicon carbide (Si/SiC) core–shell nanowires grown on quartz substrates by hot-wire chemical vapor deposition were studied. Nickel was used as a catalyst to induce the growth of these core–shell nanowires followed by the vapor–solid–solid growth mechanism. The nanowires were grown by varying substrate-to-filament distance; ds-f from 1.9 to 3.1 cm with an interval of 0.4 cm. Lower ds-f produced a high density of straight core–shell nanowires. A highly crystalline single crystal Si core of the nanowires was produced at lower ds-f as well. Presence of Si and SiC nano-crystallites embedded within an amorphous matrix in the shell of the nanowires exhibited a high intensity of photoluminescence emission spectra from 600 to 1000 nm. The effects of the ds-f on the structural and optical properties of the nanowires are discussed.  相似文献   

10.
Lee EK  Choi BL  Park YD  Kuk Y  Kwon SY  Kim HJ 《Nanotechnology》2008,19(18):185701
High quality, single-crystal silicon nanowires were successfully grown from silicon wafers with a nickel catalyst by utilizing a solid-liquid-solid (SLS) mechanism. The nanowires were composed of a crystalline silicon core with an average diameter of 10?nm and a thick outer oxide layer of between 20 and 30?nm at a growth temperature of 1000?°C. When utilizing the SLS growth mechanism, the diameter of the silicon nanowire is dependent solely upon the growth temperature, and has no relation to either the size or the shape of the catalyst. The characteristics of the silicon nanowires are highly dependent upon the properties of the silicon substrate, such as the crystal phase of silicon itself, as well as the doping type. The possibility of doping of silicon nanowires grown via the SLS mechanism without any external dopant source was demonstrated by measuring the electrical properties of a silicon nanowire field effect transistor.  相似文献   

11.
High quality single crystalline vanadium pentoxide (V2O5) nanowires were grown on sapphire and ITO coated glass substrates using spin coating followed by annealing process. The nanowires formed by this method are found to be approximately 5 μm long with an average diameter of 100 nm. The thickness of the spin coated vanadium precursor film played a vital role to form uniform seed layers which are essential for the growth of high quality V2O5 nanowires. The growth mechanism was investigated with respect to temperature and thickness of the precursor film. The synthesized nanowires have been proven to be a potential photocatalyst for the degradation of toluidine blue O dye under ultraviolet irradiation.  相似文献   

12.
Silicon nanowires were grown on a stainless steel substrate using a vapor-liquid-solid mechanism in self-catalytic mode. The multi-component Fe-Cr-Ni-Mn-Si catalyst that was formed from the substrate leads the growth of single-crystal Si nanowires with lengths of several micrometers and diameters ranging from 100 to 150 nm. A systematic investigation of the processing parameters revealed that the hydrogen flow rate is critical to the growth of the nanowires. At a high flow rate that exceeds 1000 sccm, the substrate is embrittled by H2, and liquid droplets, which lead the growth of nanowires by the vapor-liquid-solid mechanism, are formed on the substrate. Electrical transport measurements indicated that the nanowires grown with the multi-component catalyst have electrical properties comparable to those grown by a single-component Ti catalyst.  相似文献   

13.
Tin-catalyzed silicon nanowires were synthesized for solar cells application. Voluminous silicon nanowires were fabricated on single crystalline silicon wafer. Optical reflectance and solar cell efficiency of the synthesized silicon nanowires were explored. The reflectance of as-synthesized silicon nanowires was obtained approximately 5% in the short wavelength region (λ < 500 nm). A short circuit current of 2.3 mA/cm2 and open circuit voltage of 520 mV for 1 cm2 SiNWs solar cell was obtained.  相似文献   

14.
3C-SiC nanowires and nanocones were grown by pyrolysing mixture of acid-treated oil palm empty fruit bunch fibres and rice husk ash (RHA), which acted as carbon and silicon source, respectively. The effects of different RHA amounts and pyrolysis temperature were studied. When the amount of RHA was increased to 80 % of the mixture, there was a change in the morphology from nanowires to nanocones. Overall, it was found that 40 % of RHA in the mixture was the ideal amount in growing the nanowires with the maximum yield and with the least amount of impurities. When the pyrolysis temperature was raised, there was an increase in the amount, diameter and length of the nanowires. The proposed main growth mechanism for the SiC nanowires were combination of solid-state reaction and vapour–solid mechanisms, with some nanowires grown under vapour–liquid–solid (VLS) mechanism induced by trace metals as well. The growth of the nanocones could also be related to VLS mechanism.  相似文献   

15.
采用高压脉冲激光沉积法(HP-PLD)研究了压强、金催化层厚度对钠掺杂氧化锌纳米线(ZnO:Na)生长的影响, 并制备了ZnO:Al薄膜/ZnO:Na纳米线阵列同质pn结器件。实验发现, 当金膜厚度为4.2 nm, 生长压强为3.33×104 Pa, 生长温度为875℃时, 可在单晶Si衬底上生长c轴取向性良好的ZnO纳米线阵列。X射线衍射和X射线光电子能谱综合分析证实了Na元素成功掺入ZnO纳米线晶格中。在低温(15 K)光致发光谱中, 观测到了一系列由Na掺杂ZnO产生引起的受主光谱指纹特征, 如中性受主束缚激子峰(3.356 eV, A0X)、导带电子到受主峰(3.312 eV, (e, A0))和施主受主对发光峰(3.233 eV, DAP)等。通过在ZnO:Al薄膜上生长ZnO:Na纳米线阵列形成同质结, 测得I-V曲线具有明显的整流特性, 证实了ZnO:Na纳米线具有良好的p型导电性能。  相似文献   

16.
C.Y. KuoC. Gau 《Thin solid films》2011,519(11):3603-3607
Silicon nanowires (SiNWs) were grown at low temperatures close to metal silicon eutectic point on a silicon substrate using gold catalyst coupled with assistance of the aluminum anodic oxide template. Either a vapor-solid-solid (VSS) growth process below metal silicon eutectic temperature or a vapor-liquid-solid (VLS) process at slightly higher temperatures was observed. The transmission electron microscopy coupled with both the X-ray energy dispersive spectroscopy and the selected area electron diffraction was adopted to characterize the SiNWs. Although the mechanism triggering the VSS process is still not clear, both the geometric and morphological characteristics of the SiNWs grown by the VSS process are discussed and compared with the SiNWs grown by the VLS process. The VSS SiNWs have a much slower growth rate (less than 100 nm/h), a smaller and more uniform diameter (in the range of 15.22 nm) due to a much slower rate of silicon diffusion and much smaller amount of silicon (6.8 wt.%) dissolved in the solid nanocatalyst.  相似文献   

17.
Anatase TiO2 film (100-1000 nm thick) grown on glass, sapphire (0001), and Si (100) substrates by pulsed dc-magnetron reactive sputtering were evaluated for stress and strain analysis using Raman spectroscopy and curvature measurement techniques. The X-ray analysis revealed that films prepared for this study were purely anatase, and the measurements indicate that the film exhibit that (101) is the preferred growth orientation of the crystallites, especially for the film thicker than 100 nm. Curvature measurements and Raman spectroscopy, with 514.5 nm excitation wavelength, phonon line shift were used for stress analysis. A comparison between Raman lineshapes and peak shifts yields information on the strain distribution as a function of film thickness. The measurements of residual stresses for crystalline anatase TiO2 thin film showed that all thin film were under compressive stress. A correlation between Raman shifts and the measured stress from the curvature measurements was established. The behavior of the anatase film on three different substrates shows that the strain in film on glass has a higher value compared to the strain on sapphire and on silicon substrates. The dominant 144 cm− 1Eg mode in anatase TiO2 clearly shifts to a higher value by 0.45-5.7 cm− 1 depending on the type of substrate and film thickness. The measurement of the full width at half maximum values of 0.59-0.80 (2θ°) for the anatase (101) peaks revealed that these values are greater than anatase powder 0.119 (2θ°) and this exhibits strong crystal anisotropy with thermal expansion.  相似文献   

18.
《Materials Research Bulletin》2013,48(4):1545-1552
For the first time, high quality tin oxide (SnO2) nanowires have been synthesized at a low substrate temperature of 450 °C via vapor–liquid–solid mechanism using an electron beam evaporation technique. The grown nanowires have shown length of 2–4 μm and diameter of 20–60 nm. High resolution transmission electron microscope studies on the grown nanowires have shown the single crystalline nature of the SnO2 nanowires. We investigated the effect of growth temperature and oxygen partial pressure on SnO2 nanowires growth. Variation of substrate temperature at a constant oxygen partial pressure of 4 × 10−4 mbar suggested that a temperature equal to or greater than 450 °C was the best condition for phase pure SnO2 nanowires growth. The SnO2 nanowires grown on a SiO2 substrate were subjected to UV photo detection. The responsivity and quantum efficiency of SnO2 NWs photo detector (at 10V applied bias) was 12 A/W and 45, respectively, for 12 μW/cm2 UV lamp (330 nm) intensity on the photo detector..  相似文献   

19.
《Materials Research Bulletin》2006,41(11):2013-2017
We present a synthetic method of zinc sulfide nanowires by a simple and safe reaction of zinc oxide and iron sulfide powders on a gold-coated silicon substrate through chemical vapor transport and condensation. High quality ZnS nanowires with single crystalline wurtzite structures are grown along [0 0 1] direction with diameters in the range of 10–30 nm and lengths up to tens of micrometers. Photoluminescence spectrum shows strong emission near 339 nm. These nanowires with cleaved ends could be a prominent candidate material for a nanoscale cavity as a ultra-violet nanolaser.  相似文献   

20.
Ahmad Umar 《Materials Letters》2007,61(27):4954-4958
Well-crystallized with excellent optical properties, needle-shaped ZnO nanowires have been synthesized on silicon substrate in a high density via the thermal evaporation of metallic zinc powder without the use of catalysts or additives. Extensive structural analysis showed that the grown nanowires are highly crystalline with the wurtzite hexagonal phase, grown along the [0001] in the c-axis direction. The presence of an optical-phonon E2 mode in Raman spectrum at 437 cm− 1 and sharp and strong UV emission at 379 nm with no green emission in the room-temperature photoluminescence (PL) spectrum confirms good crystallinity with the excellent optical properties for the deposited nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号