首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Flow is widely considered one of the primary drivers of instream ecological response. Increasingly, hydroecological models form the basis of integrated and sustainable approaches to river management, linking flow to ecological response. In doing so, the most ecologically relevant hydrological variables should be selected. Some studies have observed a delayed macro‐invertebrate (ecological) response to these variables (i.e. a cumulative inter‐annual effect, referred to as multi‐annual) in groundwater‐fed rivers. To date, only limited research has been performed investigating this phenomenon. This paper examines the ecological response to multi‐annual flow indicators for a groundwater‐fed river. Relationships between instream ecology and flow were investigated by means of a novel methodological framework developed by integrating statistical data analysis and modelling techniques, such as principal component analysis and multistep regression approaches. Results demonstrated a strong multi‐annual multi‐seasonal effect. Inclusion of additional antecedent flows indicators appears to enhance overall model performance (in some cases, goodness of fit statistics such as the adjusted R‐squared value exceeded 0.6). These results strongly suggest that, in order to understand potential changes to instream ecology arising from changing flow regimes, multi‐annual and multi‐seasonal relationships should be considered in hydroecological modelling. © 2017 The Authors River Research and Applications Published by John Wiley & Sons Ltd.  相似文献   

3.
Spatio‐temporal variability in river flow is a fundamental control on instream habitat structure and riverine ecosystem biodiversity and integrity. However, long‐term riverine ecological time‐series to test hypotheses about hydrology–ecology interactions in a broader temporal context are rare, and studies spanning multiple rivers are often limited in their temporal coverage to less than five years. To address this research gap, a unique spatio‐temporal hydroecological analysis was conducted of long‐term instream ecological responses (1990–2000) to river flow regime variability at 83 sites across England and Wales. The results demonstrate clear hydroecological associations at the national scale (all data). In addition, significant differences in ecological response are recorded between three ‘regions’ identified (RM1–3*) associated with characteristics of the flow regime. The effect of two major supra‐seasonal droughts (1990–1992 and 1996–1997) on inter‐annual (IA) variability of the LIFE scores is evident with both events showing a gradual decline before and recovery of LIFE scores after the low flow period. The instream community response to high magnitude flow regimes (1994 and 1995) is also apparent, although these associations are less striking. The results demonstrate classification of rivers into flow regime regions offers a way to help unravel complex hydroecological associations. The approach adopted herein could easily be adapted for other geographical locations, where datasets are available. Such work is imperative to understand flow regime–ecology interactions in a longer term, wider spatial context and so assess future hydroecological responses to climate change and anthropogenic modification of riverine ecosystems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A method linking qualitative and semi‐quantitative change in riverine benthic macroinvertebrate communities to prevailing flow regimes is proposed. The Lotic‐invertebrate Index for Flow Evaluation (LIFE) technique is based on data derived from established survey methods, that incorporate sampling strategies considered highly appropriate for assessing the impact of variable flows on benthic populations. Hydroecological links have been investigated in a number of English rivers, after correlating LIFE scores obtained over a number of years with several hundred different flow variables. This process identifies the most significant relationships between flow and LIFE which, in turn, enables those features of flow that are of critical importance in influencing community structure in different rivers to be defined. Summer flow variables are thus highlighted as being most influential in predicting community structure in most chalk and limestone streams, whereas invertebrate communities colonizing rivers draining impermeable catchments are much more influenced by short‐term hydrological events. Biota present in rivers with regulated or augmented flows tend to be most strongly affected by non‐seasonal, interannual flow variation. These responses provide opportunities for analysing and elucidating hydroecological relationships in some detail, and it should ultimately be possible to use these data to set highly relevant, cost‐effective hydroecological objectives. An example is presented to show how this might be accomplished. Key areas of further work include the need to provide robust procedures for setting hydroecological objectives, investigation of habitat quality and LIFE score relationships in natural and degraded river reaches and evaluation of potential links with other biological modelling methods such as RIVPACS. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Rivers are hierarchical systems exhibiting processes and patterns across spatial and temporal scales principally driven by changes in flow. Hydrological indices estimated with mean or median daily flow data (i.e. daily scale) may be insensitive to anthropogenic alteration that imparts sub‐daily variation to flow. Therefore, indices developed at multiple temporal resolutions may provide additional insight into the presence of flow patterns masked by traditional techniques. We characterized the flow regime along the longitudinal gradient of the Platte River, a large Great Plains USA river, using hydrological indices derived with mean daily and sub‐daily flow data and a combination of multivariate statistical techniques. Three unique flow units were evident using daily scale flow data, whereas six unique flow units were evident at the sub‐daily scale. Flow units at both scales were not static, but rather the presence and extent of flow units across the riverscape depended on climate, tributary inflows and human influence. Anthropogenic alteration including hydropeaking was evident at the sub‐daily scale but not at the daily scale. The full complement of flow structure within regulated rivers, therefore, may not be captured using mean or median daily discharge values alone. Inductive river classification studies may benefit from assessing hydrological indices at multiple scales, particularly when investigating river systems with anthropogenic modification such as hydropeaking. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The majority of rivers in the Australian tropics possess near‐natural flow regimes and are an ecological asset of global significance. We examined flow variability in large floodplain rivers in the Gulf of Carpentaria, northern Australia, and the potential ecological impacts of future water resource development (WRD). Flow metrics based on long‐term records were used to classify flow regimes and predict hydrological drivers of ecological function. Flow regimes of selected rivers were then compared with those simulated for pre‐ and post‐WRD flows in the Darling River, a highly modified river in Australia's south‐east. Generally, rivers were classified as typically ‘tropical’ (more permanent, regular flows) or ‘dryland’ (more ephemeral, with greater flow variability). In addition, all rivers displayed wet–dry seasonality associated with changes in flow magnitude or number of zero‐flow days. We propose that these features (flow permanence and regularity; flow variability and absence; wet–dry seasonality) are the key hydrological drivers of biodiversity and ecological function in the floodplain rivers of Australia's north. In terms of WRD, inter‐annual flow variability was predicted to increase or decrease depending on rivers' natural flow regimes, specifically their tendency toward lower or higher flow magnitudes. Either outcome is expected to have adverse effects on the biodiversity and ecological function of these relatively pristine rivers and floodplain habitats. In particular, reduced and homogenized habitat, loss of life‐history cues, inhibited dispersal and shifts in community composition, as a result of WRD, threaten the ecological integrity of rivers adapted to the three hydrological drivers above. These findings serve as a caution for careful consideration of WRD options for rivers in the Australian tropics and for those with similar flow regimes the world over. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The utility of hydrologic indices for describing various aspects of streamflow regimes has resulted in their increased application in riverine research. Consequently, researchers are now confronted with the task of having to choose among a large number of competing hydrologic indices to reduce computational effort and variable redundancy prior to statistical analyses, while still adequately representing the major facets of the flow regime. The present study addresses this concern by providing a comprehensive review of 171 currently available hydrologic indices (including the commonly used Indicators of Hydrologic Alteration) using long‐term flow records from 420 sites from across the continental USA. We highlight patterns of redundancy among these hydrologic indices and provide a number of statistically and ecologically based recommendations for the selection of a reduced set of indices that can simultaneously (1) explain a dominant proportion of statistical variation in the complete set of hydrologic indices and (2) minimize multicollinearity while still adequately representing recognized, critical attributes of the flow regime. In addition, we examine the transferability of hydrologic indices across ‘stream types’ by identifying indices that consistently explain dominant patterns of variance across streams in varying climatic and geologic environments. Together, our results provide a framework from which researchers can identify hydrologic indices that adequately characterize flow regimes in a non‐redundant manner. In combination with ecological knowledge, this framework can guide researchers in the parsimonious selection of hydrologic indices for future hydroecological studies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The large and accumulating body of evidence for both the controlling effect of the flow regime on river ecology and for the dependence of river health on the natural flow regime has led to the increasing use of hydrologic indices in instream flow studies. The myriad of collinear hydrologic indices present a daunting challenge to water managers trying to select a manageable number of indices for use in a hydrology‐based environmental flow framework. In this study, a large number of hydrologic indices were calculated from gauging sites in the prairie provinces of Canada. Principal component analysis (PCA) and two rank‐based non‐parametric techniques are compared in their ability to select a small number of statistically informative indices. Despite the data being skewed and far from normal, PCA and the non‐parametric technique called BioEnv + stepwise (BEST) both led to similar interpretations and could identify a small number of indices that capture a majority of the statistical variability. BEST selected indices more evenly from among conceptual categories of flow than PCA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The correspondence and performance of six classifications of flow regimes of New Zealand rivers that were all mapped onto the same digital river network were assessed. Classification 1 was defined deductively, based on expert‐defined rules. Classifications 2 to 6 were defined inductively using hydrological indices calculated from 321 natural daily flow records. Classifications 2 to 4 were defined by first clustering the gauges based on the hydrological indices and then predicting the class of each segment of the network using a Random Forest classifier. Classifications 5 and 6 were defined by first predicting the indices for each segment of the network using Random Forest regression models. Cluster analysis was then used to group the network segments into classes. Further differences between classifications were due to differences in the standardisation of the hydrological indices and clustering algorithms. Correspondence (extent to which the patterns defined by the classifications were similar) was assessed formally using the adjusted Rand index and visually. The performance of the classifications was assessed using classification strength calculated using the hydrological indices and ANOVA calculated for individual indices. Correspondence between the classifications was low (adjusted Rand index range, 0.1–0.5). Classification strength and ANOVA statistics assessed using cross validation indicated that the inductive classifications performed better than the deductively defined classification and that there were some significant differences in performance between the inductive classifications. However, these differences were not large from a practical point of view. Our results indicate that there are many credible classifications of the flow regimes of a study region. When considering methods for defining flow regime classifications, aspects other than the predictive performance, such as flow data requirements and how easily the final classification can be explained, should be considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
在评价河流水文情势变化特征时,传统水文改变指标法(indicators of hydrologic alteration,IHA)存在的指标间相关性高和数据冗余问题会造成整体评价偏差。对汉江下游流域的河流水文情势评价时,考虑到汉江流域干支流日均流量及取水调水工程等的影响,分别选择汉江干流上的3个水文站及支流流域的3个水文站点,采用主成分分析法对6个水文站IHA指标进行优选,再利用相关性分析结果进一步筛选,优选出适用于评价汉江下游流域水文情势的13个代表性指标,分别为2月流量、4月流量、7月流量、10月流量、12月流量、基流指数、最低流量出现日期、最高流量出现日期、低流量脉冲次数、高流量持续时间、日均流量增加率、日平均流量减少率和日均流量反转数。结果表明:6个水文站的代表性指标间相关性均大幅降低,13个代表性指标间的相关系数不超过0.3的占比约70%;经变化范围评价法(range of variability approach,RVA)验证,IHA指标与优选出的代表性指标对汉江下游流域整体水文改变度评价结果的差值均小于7.5个百分点,表明其能够对汉江下游流域提供较为全面合理的水文情势变化...  相似文献   

12.
Hydrological regime, physical habitat structure and water chemistry are interacting drivers of fish assemblage structure in floodplain rivers throughout the world. In rivers with altered flow regimes, understanding fish assemblage responses to flow and physico‐chemical conditions is important in setting priorities for environmental flow allocations and other river management strategies. To this end we examined fish assemblage patterns across a simple gradient of flow regulation in the upper Murray–Darling Basin, Australia. We found clear separation of three fish assemblage groups that were spatially differentiated in November 2002, at the end of the winter dry season. Fish assemblage patterns were concordant with differences in water chemistry, but not with the geomorphological attributes of channel and floodplain waterholes. After the summer‐flow period, when all in‐channel river sites received flow, some floodplain sites were lost to drying and one increased in volume, fish assemblages were less clearly differentiated. The fish assemblages of river sites did not increase in richness or abundance in response to channel flow and the associated potential for increased fish recruitment and movement associated with flow connectivity. Instead, the more regulated river's fish assemblages appeared to be under stress, most likely from historical flow regulation. These findings have clear implications for the management of hydrological regimes and the provision of environmental flows in regulated rivers of the upper Murray–Darling Basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Streamflow in the Ésera and Upper Cinca Rivers (South Central Pyrenees) experiences alterations in the form of rapid pulses, commonly referred to as hydropeaks, associated with highly variable on-demand hydropower production from flowing or stored water. A hydrological characterization of the hydropeaks in these two rivers was carried out to examine their distinct hydropeaking pattern during hydrologically contrasted years. The Ésera demonstrated a hydropeaking regime characterized by a high frequency and magnitude, while the Upper Cinca presented a regime with higher frequency but of lesser magnitude. Additionally, this study classified hydropeaks following the shapes proposed in previous studies and assessed their temporal distribution (frequency), timing, and magnitude. Results indicated that hydropeaks were different in shape and magnitude in both rivers; a Front Step pulse shape dominated in the Ésera whereas a Rectangle pulse shape was the most frequent in the Cinca. The Front Step shape had the highest ramping rates during the rising limb of the hydrograph and the shortest time to the maximum flow; whereas the Rectangle shape had higher duration and a larger volume of water released. Hydropeaks in the Ésera were less frequent (one per day) than in the Cinca (two per day). The river Ésera presented, in general, high-magnitude hydropeaks, with double volume and duration, and three times larger up-ramping rates and time between flow pulses. Overall, hydropeak shapes in the Ésera varied depending on the hydrological year and the season, while in the Cinca, shape distribution followed the same temporal pattern regardless of year and season; thus, hydropeaking in the Ésera appeared to be much more dependent on the annual hydrology (whether the year is wet or dry) than in the Cinca. Hydropeaking regimes were characterized based on three categories of variables: magnitude (flow-based or hydrological variables), timing (duration), and frequency (occurrence). According to the variability of these variables, a total of three statistically significant groups were obtained in the Ésera, while two groups were identified in the Cinca. Hydropeaks can be statistically classified by their hydrological characteristics that in turn may have a direct effect on sediment entrainment and transport with implications to the ecological functioning of rivers. The different shape of the hydropeaks, however, will control the attenuation of the flows downstream and, consequently, the maintenance of the river's competence and capacity. This methodology provides a useful quantification of hydropeaking regimes to assess the potential impacts on physical and biological aspects of river systems.  相似文献   

14.
Characterizing temporary river ecosystem responses to flow regimes is vital for conserving their biodiversity and the services they provide to society. However, freshwater biomonitoring tools rarely reflect community responses to hydrological variations or flow cessation events, and those available have not been widely tested within temporary rivers. This study examines two invertebrate biomonitoring tools characterizing community responses to different flow‐related properties: the “Drought Effect of Habitat Loss on Invertebrates” (DEHLI) and “Lotic‐invertebrate Index for Flow Evaluation” (LIFE), which, respectively reflect community responses to habitat and hydraulic properties associated with changing flow conditions. Sub‐seasonal (monthly) variations of LIFE and DEHLI were explored within two groundwater‐fed intermittent rivers, one dries sporadically (a flashy, karstic hydrology—River Lathkill) and the other dries seasonally (a highly buffered flow regime—South Winterbourne). Biomonitoring tools were highly sensitive to channel drying and also responded to reduced discharges in permanently flowing reaches. Biomonitoring tools captured ecological recovery patterns in the Lathkill following a supra‐seasonal drought. Some unexpected results were observed in the South Winterbourne where LIFE and DEHLI indicated relatively high‐flow conditions despite low discharges occurring during some summer months. This probably reflected macrophyte encroachment, which benefitted certain invertebrates (e.g., marginal‐dwelling taxa) and highlights the importance of considering instream habitat conditions when interpreting flow regime influences on biomonitoring tools. Although LIFE and DEHLI were positively correlated, the latter responded more clearly to drying events, highlighting that communities respond strongly to the disconnection of instream habitats as flows recede. The results highlighted short‐term ecological responses to hydrological variations and the value in adopting sub‐seasonal sampling strategies within temporary rivers. Findings from this study indicate the importance of establishing flow response guilds which group taxa that respond comparably to flow cessation events. Such information could be adopted within biomonitoring practices to better characterize temporary river ecosystem responses to hydrological variations.  相似文献   

15.
Classification of natural flow regimes of non-perennial rivers and streams (NPRS) is an incipient field of research. NPRS represent approximately 70% of the total Mediterranean rivers and are expected to increase in the next decades as a result of climate change. Due to the ecological importance of NPRS and the need to improve national ecological assessment methods within the scope of the Water Framework Directive (WFD), this paper aims to classify the hydrological regime of 69 non-regulated streams, testing several hydrological indices related to the magnitude, frequency, duration, timing, and rate of change in periods of flow cessation. Using daily flow records, a total of 315 indices were calculated and their relationships were examined with Principal Component Analysis (PCA) for different thresholds used to define zero-flow condition (0, 1, 2, and 5 L/s). Redundancy analysis identified five indices that better describe the patterns of hydrological variability in Mediterranean NPRS: number of days per year without flow, annual percentage of months without flow, mean daily annual flow, coefficient of variation of Julian date of the annual start of zero-flow and annual rise rate. Using these indices, a self-organizing map (SOM) was trained in order to categorize the NPRS into three groups with similar hydrological features. The results of this study provide a statistically-based hydrological classification of NPRS in Mediterranean environments. We expect that this classification will provide useful insights to water authorities to improve the assessments of the ecological status in this type of water bodies.  相似文献   

16.
A good understanding of the natural flow regime plays an important role in many hydrological studies. Also important in such studies is the quantification of environmental flows. This study focuses on flow metrics that best describe the natural flow regime and the hydrological characteristics for rivers in New Brunswick (Canada) as well as quantifying environment flows for these rivers. New Brunswick rivers have a mean annual flow (MAF) of approximately 23 L s?1 km?2, which is also reflective of the water availability. The frequency analysis showed that low flows (T = 2–50 years, where T is the recurrence interval) were all below the 10% MAF. Environmental flow methods based on the MAF and flow duration analysis (median flow) showed good regional regression equations. However, flow duration methods showed high variability especially at flows between Q80 and Q100. Flow targets based on the 25% MAF, Q50 and 70% Q50 were used to estimate environmental flows, particularly during low‐flow periods (winter and summer). Results showed that the 70% Q50 method should be used with caution in summer as this method provided flows in the range of 15–16% of MAF. Other methods provided environmental flows higher than 15% MAF, thus, providing better flow protection for aquatic habitat. When comparing water availability for off‐stream use (river flow–environmental flow), different parts of New Brunswick were found to be deficient in flows (i.e., river flows less than environment flows—no extractable water) during the summer and winter low‐flow periods.  相似文献   

17.
Assessing potential deviations of the fundamental river basins’ hydrological processes and streamflow characteristics from the “natural trajectory” represents a high-priority objective to understand the biological impact of altered flow regime on river ecosystems. Existing approaches are mainly based on the analysis of daily-based indicators of hydrologic alteration, which requires wide database, including “pre-impact” and “post-impact” daily flow data frequently unavailable. The hydrological modeling is commonly used to face data missing problems or reconstruct natural conditions, even if models, especially at the daily scales, are often complex and computationally intensive. The use of simpler and more parsimonious models results, sometimes, essential for practical applications, also in consideration of the typical scarce availability of some data. This paper proposes an alternative approach for the evaluation of rivers flow regime alterations, based on different monthly hydrological indicators that are first computed and then combined to provide a global index of alteration. The procedure, conceptually derived from the Range of Variability Approach (RVA), is applied and tested on two Sicilian river basins (Italy) subject to anthropogenic influence. Streamflow regime for both the basins results differently disturbed by upstream human pressures. An alteration index is computed using available observations as “post-impact” monthly flow time-series, while time-series relative to “pre-impact” conditions have been reconstructed by the Tri.Mo.Ti.S. model, an innovative monthly and high-performing regional regressive hydrological model. The methodology, easily transferable to other regions, has revealed particularly efficacious in identifying and quantifying the existing human pressures and can be considered as a suitable tool for water resource management and policy planning activities.  相似文献   

18.
Presented in this paper is a hydraulic model that combines a rational regime theory with an at‐a‐station hydraulic geometry simulator (ASHGS) to predict reach‐averaged hydraulic conditions for flows up to but not exceeding the bankfull stage. The hydraulic conditions determined by ASHGS can be paired with an empirical joint frequency distribution equation and applicable habitat suitability indices to generate weighted usable area (WUA) as a function of flow. ASHGS was tested against a 2‐dimensional hydrodynamic model (River2D) of a mid‐size channel in the Interior Region of British Columbia. By linking ASHGS to a regime model, it becomes possible to evaluate the direction and magnitude of habitat changes associated with a wide range of environmental changes. Our regime model considers flow regime, sediment supply, and riparian vegetation: these governing variables can be used to simulate responses to forest fire, flow regulation and changes in climate and land use. Practitioners can examine ‘what‐if’ scenarios that otherwise would be too expensive and time consuming to fully explore. The model boundaries of commonly used data‐intensive hydraulic habitat models (e.g. PHABSIM) are not easily adjusted and such models are not designed to estimate future morphological and hydraulic habitat conditions in rivers the undergo significant channel restructuring. The proposed model has the potential to become an accepted flow assessment tool amongst practitioners due to modest data requirements, user‐friendliness, and large spatial applicability; it can be used to conduct preliminary assessments of channel altering projects and determine if in‐depth habitat assessments are justified.  相似文献   

19.
Alterations to flow regimes from regulation and climatic change both affect the biophysical functioning of rivers over long time periods and large spatial areas. Historically, however, the effects of these flow alteration drivers have been studied separately. In this study, results from unregulated and regulated river management models were assessed to understand how flow regime alterations from river regulation differ under future climate conditions in the Sierra Nevada of California, USA. Four representative flow alteration metrics—mean annual flow, low flow duration, centroid timing and mean weekly rate of decrease—were calculated and statistically characterized under historical and future unregulated and regulated conditions over a 20‐year period at each of the eight regulated river locations below dams across the Sierra Nevada. Future climatic conditions were represented by assuming an increase in air temperature of 6 °C above historical (1981–2000) air temperatures, with no change in other meteorological conditions. Results indicate that climate warming will measurably alter some aspects of the flow regime. By comparison, however, river regulation with business‐as‐usual operations will alter flow regimes much more than climate warming. Existing reservoirs can possibly be used to dampen the anticipated effects of climate warming through improved operations, though additional research is needed to identify the full suite of such possibilities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Most of the world's alluvial plain rivers have undergone hydrological and geomorphical modifications due to water abstraction, dam and levee construction, gravel mining and other human activities. Some of these rivers function as benchmark systems for identifying and quantifying the ecological responses to hydrological and geomorphological changes. Benchmark systems are critical for understanding these responses, for predicting the effects of future changes, and for trialling restoration and mitigation measures. The Selwyn River of New Zealand is a benchmark system for undammed alluvial rivers that are under intense pressure for water abstraction, and are subject to large flow fluctuations. The Selwyn is a remarkably complex river, and increased understanding of this system will provide insight for understanding and managing other rivers in its class. Hydrological properties that characterize the Selwyn include strong surface water–groundwater interactions, contiguous ephemeral, intermittent, perennial‐losing and perennial‐gaining reaches and an expanding and contracting dry segment that persists for most of the year. The dry segment, in combination with broad spatial variation in aquifer structure and rainfall, cause the upstream (runoff‐fed) and downstream (groundwater‐fed) river sections to function very differently. These sections are also dissimilar in channel morphology; the upstream section has a braided planform, with mobile bars, and abundant islands and remnant channels, and the downstream section has a single, meandering channel, stable bars and no islands. As in many alluvial plain rivers, large floods drive reach‐scale channel evolution. This paper introduces a long‐term research program that is underway at the Selwyn River, and explores the hydrological and morphological dynamics that characterize the river. We focus on groundwater–surface water interactions, flow‐permanence patterns and flood‐dependent geomorphology. Hydrological and meteorological data are summarized in a conceptual model of relationships between prevailing weather systems, runoff, aquifer recharge and river flow. The physical template described in this paper governs ecological processes such as dispersal, succession and nutrient cycling. A conceptual model is proposed to organize predictions about dispersal in response to changes in hydrological connectivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号