共查询到20条相似文献,搜索用时 15 毫秒
1.
有机郎肯循环利用太阳能、地热能和余热驱动,是回收余热、实现能源可持续发展的一个很好途径。有机郎肯循环可与喷射制冷循环结合,可同时提供电能和冷量。喷射器内部流体的不可逆混合引起的能量损失,是该系统最大部分的能量损失。着眼喷射器内部流场分布和机理,分析工作参数和几何参数对其性能的影响,以优化喷射器设计,减小系统能量损失,提高带有喷射器的有机郎肯循环复合系统的效率和节能潜力。结果显示,提高引射压力和出口压力会导致喷射器内部更多能量损失,制约整体系统的性能;在给定工况下,可通过钝化喷嘴内壁面、喷嘴处于最佳位置使喷射器达到最大喷射系数、最优性能,和最小的能量损失。 相似文献
2.
In this paper, the operation performance of three novel kinds of cogeneration systems under design and off-design condition was investigated. The systems are MGT (micro gas turbine) + ORC (organic Rankine cycle) for electricity demand, MGT+ ERC (ejector refrigeration cycle) for electricity and cooling demand, and MGT+ ORC+ ERC for electricity and cooling demand. The effect of 5 different working fluids on cogeneration systems was studied. The results show that under the design condition, when using R600 in the bottoming cycle, the MGT+ ORC system has the lowest total output of 117.1 kW with a thermal efficiency of 0.334, and the MGT+ ERC system has the largest total output of 142.6 kW with a thermal efficiency of 0.408. For the MGT+ ORC+ ERC system, the total output is between the other two systems, which is 129.3 kW with a thermal efficiency of 0.370. For the effect of different working fluids, R123 is the most suitable working fluid for MGT+ ORC with the maximum electricity output power and R600 is the most suitable working fluid for MGT+ ERC with the maximum cooling capacity, while both R600 and R123 can make MGT+ ORC+ ERC achieve a good comprehensive performance of refrigeration and electricity. The thermal efficiency of three cogeneration systems can be effectively improved under off-design condition because the bottoming cycle can compensate for the power decrease of MGT. The results obtained in this paper can provide a reference for the design and operation of the cogeneration system for distributed energy systems (DES). 相似文献
3.
Xinguo Li 《国际能源研究杂志》2016,40(12):1624-1637
Based on organic Rankine cycle (ORC), a trapezoidal cycle with theoretical model is proposed and built according to the trapezoidal configuration and the thermodynamic relation in T–s diagram. Simulations show that the relative deviation between trapezoidal cycle and ORC is lower than 5% within evaporation temperature of 5 °C lower than the critical temperature of the working fluids. Empirical equations to calculate the optimal evaporation temperature, the maximum net power output and the corresponding thermal efficiency are built, which relative deviations from ORC are lower than 4%. Trapezoidal cycle can break through the restrictions of the actual working fluids and the configuration of the ORC to extend the study of the ORC and investigate the general principle of the ORC (or the trapezoidal cycle). Trapezoidal cycle can develop to trilateral cycle or Carnot cycle, which are the boundary cycles of the trapezoidal cycle. Trapezoidal cycle can be used as a general cycle to investigate the relations and principles among the trilateral cycle, Carnot cycle and trapezoidal cycle (or ORC). The performance of these three cycles at maximum power and their relations are investigated in the same conditions of finite heat source. Results show that the maximum power and the corresponding thermal efficiency of the trapezoidal cycle are bounded between Carnot cycle and trilateral cycle. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
4.
This study analyzes the system performance of a 50 kW ORC system subject to influence of various working fluids. A dimensionless “figure of merit” combining the Jakob number, condensing temperature, and evaporation temperature is proposed for quantitatively screening working fluid as far as thermal efficiency is concerned. The thermal efficiency normally decreases with the rise of figure of merit, and the predictive ability of the proposed figure of merit is not only applicable to the present eighteen working fluids but is also in line with some existing literatures. Analysis of the typical ORC heat exchangers indicates that the dominant thermal resistance in the shell-and-tube condenser is on the shell side. Similarly, the dominant resistance is also on the refrigerant side for the plate evaporator. However, there is a huge difference of thermal resistance amid working fluid and water side in the preheating zone. Conversely, only a minor difference exists in the evaporation region. The extremely uneven resistance distribution in the plate heat exchanger can be resolved via an additional preheater having significant augmentation in the working fluid. 相似文献
5.
A 100 kWe hybrid plant consisting of gasification system, solid oxide fuel cells and organic Rankine cycle is presented. The nominal power is selected based on cultivation area requirement. For the considered output a land of around 0.5 km2 needs to be utilized. Woodchips are introduced into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells – organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations of state). A genetic algorithm is employed to select the optimal working fluid and the maximum pressure for the bottoming cycle. Thermodynamic and physical properties, environmental impacts and hazard specifications are also considered in the screening process. The results suggest that efficiencies in the region of 54–56% can be achieved. The highest thermal efficiency (56.4%) is achieved with propylcyclohexane at 15.9 bar. A comparison with the available and future technologies for biomass to electricity conversion is carried out. It is shown that the proposed system presents twice the thermal efficiency achieved by simple and double stage organic Rankine cycle plants and around the same efficiency of a combined gasification, solid oxide fuel cells and micro gas turbine plant. 相似文献
6.
太阳能具有易转化为低温热源的特性,而有机朗肯循环是利用低温热源或工业余热发电的理想方式,两者相结合形成基于太阳能的有机朗肯循环发电技术。综述了我国光热太阳能发电技术和市场现状以及针对有机朗肯循环的研究现状。经分析发现,目前研究中理论分析或计算机模拟较多,缺乏实际应用的验证。论述了有机朗肯循环工质的选择、循环性能分析方法以及所面临的问题和改善方法。 相似文献
7.
8.
以系统发电成本(electricity production cost,EPC)为评价指标,对用于回收工业锅炉烟气余热的有机朗肯循环(ORC)系统进行了热经济分析与优化。结果表明,随着蒸发器和冷凝器节点温差的增大,系统发电成本先减小、再增大,即存在一组最优的蒸发器和冷凝器节点温差使发电成本最小。分别以纯工质R245fa和R236ea、非共沸混合工质R141b/RC318和乙烷/丁烷为循环工质,得到了最小发电成本时有机朗肯循环系统的最优工作参数,以及对应的系统净输出功、热效率和火用效率。 相似文献
9.
A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. 相似文献
10.
The effects of wind, ambient temperature and solar radiation on the simultaneous productions of mechanical work and heat by a solar Rankine cycle are studied. The on site experimental study uses the pentafluorobutane R365mfc as working fluid in a system consisting of a small-scale single glazed flat plate collector, a micro turbine, a condenser and a pump. The theoretical study focuses on the prediction of the optimum operating temperature of the collector according to the solar radiation, the temperature of air and the wind speed. Then, the total production of mechanical and thermal energy is calculated during a sunny day for which various wind speeds are simulated. The results highlight the effect of wind on the corresponding production and they also establish the value of the recommended evaporating temperature according to weather conditions. 相似文献
11.
In concentrating photovoltaic (CPV) systems the incident solar radiation is multiplied by a factor equal to the concentration ratio, with the use of lenses or reflectors. This is implemented, in order to increase the electric power production, since this value has a linear dependence from the incident radiation. Therefore, the specific energy production of the cells (kWh/m2) radically increases, but due to this high intensity CPVs consequently operate at elevated temperatures, because heat dissipation to the environment is not so intense and heat produced cannot naturally convected. This temperature increase not only leads to a reduction of their electric efficiency, but also it must be dissipated, since issues regarding their degradation and reduction of their lifetime might arise. There are many reported ways of removing this heat, either by adding a cooling unit on the back side of the CPV module, or by recovering with possible uses in buildings, industry, additional power production or even desalination of seawater.The current work is actually a feasibility study, concerning a concentrating photovoltaic/thermal (CPV/T) system, where the heat produced is recovered by an organic Rankine cycle (ORC) for additional power production. A pump drives the organic fluid of the cycle, which is evaporated in the tubes of the CPV/T and driven to an expander for mechanical power production. For the condensation of the organic fluid several possible alternatives can be applied. That way, the PV cells can be cooled effectively and increase their electrical efficiency, while the recovered heat is designated to produce additional electric energy through the organic Rankine process, when the expander of the Rankine engine is coupled to a generator.The scope of the present work is to investigate an alternative application of concentrating PV modules through exploiting the generated heat by the ORC process and combining both technologies into an integrated system. The design of the system is presented in details, along with an optimization of some main parameters. The performance of the system will also be examined and compared with an equivalent conventional CPV system, referring to their design points. Finally, the annual and daily performance will be studied, which is a more realistic indicator, concerning the increased efficiency this integrated system is expected to have, followed by a cost analysis, in order to examine its economic feasibility as well. 相似文献
12.
This paper presents the results of thermodynamics modelling studies of a 2 kW (e) biomass-fired CHP system with organic Rankine cycle (ORC). Three environmentally friendly refrigerants, namely HFE7000, HFE7100 and n-pentane, have been selected as the ORC fluids. The thermodynamic properties of the selected ORC fluids which have been predicted by commercial software (EES) are used to predict the thermal efficiency of ORC. The results of modelling show that under the simulated conditions (1) the ORC thermal efficiency with any selected ORC fluid is well below (roughly about 60% of) the Carnot cycle efficiency; the ORC efficiency depends on not only the modelling conditions but also the ORC fluid – the highest predicted ORC efficiency is 16.6%; the predicted ORC efficiency follows the following order: n-pentane > HFE7000 > HFE7100 (2) both superheating and sub-cooling are detrimental to the ORC efficiency (3) the electrical efficiency of the CHP system with the selected ORC fluids is predicted to be within the range of 7.5%–13.5%, mainly depending on the hot water temperature of the biomass boiler and the ORC condenser cooling water temperature as well as the ORC fluid, and corresponding to about 1.5 kW and 2.71 kW electricity output (4) the overall CHP efficiency of the CHP system is in the order of 80% for all three ORC fluids although the amount and quality of heating supplied by the CHP system depend on the ORC fluid selected and the modelling conditions. 相似文献
13.
In this paper, a combined first and second law approach is applied to study an ejector expansion Joule–Thomson cryogenic refrigeration cycle. The effects of the evaporator temperature, ejector pressure ratio and compressor function on the coefficient of performance (COP), exergy destruction and the exergetic efficiency have been investigated. The present study has been conducted for the evaporator and compressor temperature in the range of 75–135 and 270–330 K, respectively. The ejector pressure ratio is varied from 1.5 to 5.5. Simulation results show that COP and exergy efficiency increase with increasing evaporator temperature and ejector pressure ratio. In addition, it was found that the increase in the compressor temperature leads to the reduction in the first and second law efficiencies. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
14.
Solar thermal electricity generating technology is an alternative solution to energy crises and environmental problems, which has caused wide concern in recent decades. In this paper, a molten salt parabolic trough-based concentrated organic Rankine cycle system is proposed and investigated. A quadribasic nitrate salt with low melting temperature is employed as a heat transfer and storage medium. A stable heat transfer and economic model is established with Matlab. The radial and axial temperature distributions in the collector tube are obtained, and the impact of condensation and evaporation temperatures on the heat transfer area is analyzed. Results show that the temperature along the axial direction linearly increases, and the temperature at the collector tube exit decreases with the increase of molten salt mass flow rate. The maximum temperature difference along the radial direction of the collector tube happens in the annular gap. Heat transfer and thermodymanic analysis indicates that condensation temperature has a more evident effect on heat transfer area than that of evaporation temperature. An increase in condensation temperature leads to a decrease in the evaporator area, the condenser area increases, and the total area decreases. Economic analysis indicates the collector cost plays a predominant role in total capital costs, and decreasing molten salt mass flow rate can considerably reduce collector cost. Levelized energy cost sensitivity analysis indicated that operation time per year has a more evident effect than that of the four factors. Heat transfer and economic analysis on the system helps in the selection of operation parameters. 相似文献
15.
《International Journal of Hydrogen Energy》2022,47(41):17894-17913
In this study, the performance of a Photovoltaic Thermal-Organic Rankine Cycle (PVT-ORC) system combined with a Proton Exchange Membrane Electrolysis Cell (PEMEC) is investigated. A combined numerical/theoretical model of the system is developed and used to evaluate the effect of various system design parameters. In addition, the effects of using water, ethylene glycol, and a mixture of water and ethylene glycol (50/50) as the working fluid of the PVT system and R134a, R410a, and R407c as the working fluid of the ORC cycle on the performance of the PVT-ORC-PEMEC system are studied. Based on the results, R134a and water demonstrated the best performance as the working fluid of the ORC and PVT systems. Moreover, the electrical efficiency of the combined PVT-ORC system is 15.65% higher than the electrical efficiency of the conventional PVT system. Also, the maximum hydrogen production rate of the proposed PVT-ORC-PEMEC system is calculated to be 1.70 mol/h. 相似文献
16.
构建有机朗肯循环变工况分析模型,研究热源条件对系统变工况性能的影响规律。结果表明:随着热源温度升高,系统的最佳蒸发压力线性增大,而涡旋膨胀机的等熵效率逐渐减小。相比额定工况,热源温度变化-30.0K与30.0K时,净输出功率变化了-32.4%与18.4%,热效率降低了4.0%与11.4%,热回收效率变化幅度分别为-9.8%及8.9%;当热源温度从423增大至483K时,系统不可逆损失的变化率为-37.1%与45.5%,火用效率的变化率为6.7%与-17.5%。相比热源流量,热源温度对系统变工况性能的影响更大。 相似文献
17.
《International Journal of Hydrogen Energy》2020,45(11):6262-6277
Rice straw is a potential energy source for power generation. Here, a biomass-based combined heat and power plant integrating a downdraft gasifier, a solid oxide fuel cell, a micro gas turbine and an organic Rankine cycle is investigated. Energy, exergy, and economic analyses and multi-objective optimization of the proposed system are performed. A parametric analysis is carried out to understand the effects on system performance and cost of varying key parameters: current density, fuel utilization factor, operating pressure, pinch point temperature, recuperator effectiveness and compressors isentropic efficiency. The results show that current density plays the most important role in achieving a tradeoff between system exergy efficiency and cost rate. Also, it is observed that the highest exergy destruction occurs in the gasifier, so improving the performance of this component can considerably reduce the system irreversibility. At the optimum point, the system generates 329 kW of electricity and 56 kW of heating with an exergy efficiency of 35.1% and a cost rate of 10.2 $/h. The capability of this system for using Iran rice straw produced in one year is evaluated as a case study, and it is shown that the proposed system can generate 6660 GWh electrical energy and 1140 GWh thermal energy. 相似文献
18.
Organic Rankine cycle (ORC) is a promising technology to recover low-grade heat, but it leads to a low efficiency due to the highest irreversible loss caused by the single-stage evaporation. The present work concerns the performance enhancement of a two-stage serial organic Rankine cycle (TSORC) for geothermal power generation. The heat source is divided into two separate temperature ranges. The main goal of the current simulation is to evaluate system performance of TSORC, as well as, to calculate the influence of two-stage evaporation on system performance. The ratio of the net power output to the total thermal conductance was chosen as the objective function. Results show that the system performance is coupled with geothermal water inlet temperature (GWIT), intermediate geothermal water temperature (IGWT), and evaporating temperatures. The two-stage evaporation significantly reduces the irreversible loss, thereby enhancing the net power output. The TSORC presents excellent systematic performances and deserves to be popularized in engineering applications. 相似文献
19.
This paper presents experimental investigation of the performance of an organic Rankine cycle (ORC) with scroll expander which utilizes renewable, process and waste heats. An ORC test bench is built with a scroll expander‐generator unit modified from a refrigeration compressor‐electrical drive unit. A detailed experimental investigation within the test bench is performed with the organic working fluid R134a. The results show that scroll expander can effectively be used in low‐power ORC to generate mechanical work or electricity from low‐temperature thermal sources (e.g. 80–200 °C, respectively). The experiments are performed under fixed intake conditions into the expander. The pressure ratio and the load connected to the expander‐generator unit were varied. It is found that an optimum pressure ratio and an optimum angular speed co‐exist. When operating optimally, the expander's isentropic efficiency is the highest. The optimum angular speed is around 171 rad/s which corresponds to a generated voltage of 18.6 V. The optimum pressure ratio is about 4. The isentropic efficiency at optimum operation is found in the range of 0.5 to 0.64, depending on the intake conditions. The volumetric efficiency overpasses 0.9 at optimum operation and degrades significantly if the load is increased over the optimum load. A regenerative ORC equipped with the studied expender‐generator unit that operates under 120 °C heat source and has an air cooled condenser generates 920 W net power with efficiencies of 8.5% energetically and 35% exergetically. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
20.
The study introduced a novel thermally activated cooling concept - a combined cycle couples an ORC (organic Rankine cycle) and a VCC (vapor compression cycle). A brief comparison with other thermally activated cooling technologies was conducted. The cycle can use renewable energy sources such as solar, geothermal and waste heat, to generate cooling and power if needed. A systematic design study was conducted to investigate effects of various cycle configurations on overall cycle COP. With both subcooling and cooling recuperation in the vapor compression cycle, the overall cycle COP reaches 0.66 at extreme military conditions with outdoor temperature of 48.9 °C. A parametric trade-off study was conducted afterwards in terms of performance and weight, in order to find the most critical design parameters for the cycle configuration with both subcooling and cooling recuperation. Five most important design parameters were selected, including expander isentropic efficiency, condensing and evaporating temperatures, pump/boiling pressure and recuperator effectiveness. At the end, two additional cycle concepts with either potentially higher COP or practical advantages were proposed. It includes adding a secondary heat recuperator in the ORC side and using different working fluids in the power and cooling cycles, or so-called dual-fluid system. 相似文献