首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
该研究在5 L发酵罐水平上研究了不同初始葡萄糖质量浓度对解脂耶氏酵母(Yarrowia lipolytica)JZ-204生长和发酵产赤藓糖醇的影响。结果表明,100 g/L初始葡萄糖质量浓度有利于菌体生长,高初始葡萄糖质量浓度(300 g/L和400 g/L)有利于赤藓糖醇合成。基于此,提出两阶段葡萄糖质量浓度调控策略,即0 h时以初始葡萄糖质量浓度为100 g/L,22 h后通过补加葡萄糖使总糖量达300 g/L进行发酵。结果表明,与分批发酵相比(100 g/L、200 g/L、300 g/L、400 g/L),采用该调控策略,赤藓糖醇产量达到最高水平92.66 g/L,分别比分批发酵提高了1 347.81%、84.54%、14.66%、7.57%;生产强度达到最高的0.48 g/(L·h),分别比分批发酵提高了300%、37.14%、29.73%、20.00%。该调控策略为赤藓糖醇的高效发酵合成提供参考。  相似文献   

2.
以假丝酵母SK25.001为生产菌,通过研究其发酵产赤藓糖醇的碳源、氮源、碳氮比以及NaCl、KCl对其发酵产赤藓糖醇的影响,来探索无机盐(NaCl,KCl)渗透压对赤藓糖醇发酵的影响。结果发现,葡萄糖、酵母粉分别是其最佳碳源和氮源,最佳碳氮比为20∶1,转化率达到了14.2%;向发酵培养基中添加不同浓度的KCl或NaCl后发现,菌体生长速度随着KCl或NaCl浓度增大而降低,在KCl浓度为0.4 mol/L或NaCl浓度为0.3 mol/L时赤藓糖醇产量达到最大,达到了18.4 g/L和17.4 g/L;将NaCl和KCl的浓度用渗透压表示发现赤藓糖醇的转化率随着渗透压的增大而升高,高渗透压抑制菌体的生长。  相似文献   

3.
从自然界分离得到1株可发酵葡萄糖为赤藓糖醇的酵母菌Y-22。经鉴定,属于解脂亚罗酵母。该酵母菌在高糖条件下转化赤藓糖醇的能力比众多从国内保藏机构获得和自然界分离得到的同种、异种酵母及未鉴定耐渗酵母高很多。在5 m3和50 m3容量的发酵罐上进行发酵试验,对葡萄糖的转化率可以达到47%,赤藓糖醇在96 h内可达150 g/L以上。文中还对赤藓糖醇的分批发酵和流加发酵过程进行了讨论。  相似文献   

4.
耐高渗酵母产赤藓糖醇的影响因素   总被引:4,自引:0,他引:4       下载免费PDF全文
球拟酵母OS-194是一株单产赤藓糖醇的耐高渗酵母,该菌株高产赤藓糖醇的最佳培养基配方为葡萄糖10g/dL,酵母膏0.5g/dL,尿素0.1g/dL.最适培养条件是在摇瓶转速150r/min的条件下于35℃培养4d.在上述培养条件下,该菌株赤藓糖醇的耗糖转化率高达29.6%.磷是限制OS-194菌株高产赤藓糖醇的主要因素,当培养液中的磷质量浓度低于31.5mg/L时,赤藓糖醇的产量最高;随着磷质量浓度的升高,该菌株赤藓糖醇的产量降低,而酒精的产量和生物量却有明显升高.同时,OS-194菌株还能利用果糖、蔗糖和D-甘露糖产赤藓糖醇.  相似文献   

5.
丛梗孢酵母BH010是从蜂蜜样品中分离得到的产赤藓糖醇菌株。该实验研究了发酵培养基及发酵条件对丛梗孢酵母赤藓糖醇产量的影响。单因素实验及正交实验的结果表明,最佳发酵培养基及发酵条件为:葡萄糖含量(质量浓度)35%、酵母膏含量(质量浓度)1%、CaCl2.2H2O(质量浓度)0.2%,初始pH6.0,接种量1%,30℃摇瓶培养9d。最终赤藓糖醇产量为110.61g/L发酵液,比普通发酵条件下提高85.56%。  相似文献   

6.
解脂耶氏酵母(Yarrowia lipolytica)可很好地发酵甘油生产赤藓糖醇。NaCl作为渗透压调节剂提升发酵体系渗透压有利于提高赤藓糖醇产量,但高渗会抑制酵母生长,延长发酵周期,降低生产强度。该研究以甘氨酸、脯氨酸为渗透压保护剂,在高渗环境下,研究其如何提升酵母细胞耐高渗能力。结果发现,Y.lipolytica可吸收胞外甘氨酸和脯氨酸并在胞内积累以抵御高渗胁迫,并显著提升高渗环境下的菌体量,促进赤藓糖醇的高效合成。在7 L发酵罐水平,初始渗透压为4.17±0.17 osmol/kg时,发酵初始添加30 mg/L甘氨酸和40 mg/L脯氨酸,发酵时间由108 h减少到90 h,赤藓糖醇最终产量达到了93.6±4.2 g/L,生产强度为1.04±0.05 g/(L·h),产物得率为0.49±0.03 g/g,分别比未添加保护剂时增加了4.12%,25.3%和4.26%。  相似文献   

7.
刘鹏  王泽南  李莹  张秋子  吴红引 《食品科学》2011,32(11):216-221
利用微波-硫酸二乙酯复合诱变对产赤藓糖醇丛梗孢酵母E54进行处理,以高渗平板和摇瓶发酵为筛选方法,得到遗传稳定的诱变高产株EW29;再采用氮离子注入对EW29进行诱变处理,摇瓶发酵筛选得到诱变株EN59,其90h发酵液中赤藓糖醇产量达到55.13g/L,较EW29提高20.3%,较E54提高36.9%,遗传稳定性较好。对突变株EN59的发酵培养基进行了优化,在优化培养基葡萄糖250g/L、酵母膏5g/L、KH2PO4 0.3g/L、MnSO4 ·4H2O 0.04g/L、CuSO4 ·5H2O 0.03g/L,初始pH4的条件下,90h发酵液中赤藓糖醇平均产量达到69.00g/L以上。在优化培养基的基础上进行5L罐发酵放大实验,发酵126h赤藓糖醇产量达到71.14g/L。  相似文献   

8.
刘鹏  王泽南  苏娅  李莹  张秋子  吴红引 《食品科学》2010,31(21):308-311
利用含有300g/L 葡萄糖的高渗培养基从蜂蜜、花粉、土壤等样品中筛选耐高渗酵母菌,经薄层层析和高效液相色谱分析得到两株产赤藓糖醇且不产甘油的酵母菌,通过高碘酸氧化法筛选出其中赤藓糖醇产量较高的一株菌株E54。菌株E54 在含葡萄糖200g/L、酵母膏5g/L 的发酵培养基中发酵90h,赤藓糖醇产量为41.1g/L,转化率为22.8%。通过形态观察、生理生化实验、5.8S rDNA 序列分析并构建系统进化树,初步鉴定E54 为Moniliellaacetoabutans(丛梗孢酵母)。  相似文献   

9.
研究了圆酵母(Torula sp.)B84512以不同碳源发酵产赤藓糖醇过程中副产物甘油的生成与消耗情况。发现该菌株在以任何碳源为底物发酵过程中均会产生甘油,且在发酵中后期甘油逐渐被消耗。以甘油为唯一碳源时该菌株合成赤藓糖醇的速率及产率均低于葡萄糖。葡萄糖为圆酵母B84512发酵产赤藓糖醇的最佳碳源。采用分批补料的方式提高赤藓糖醇的产率并期望能抑制甘油的生成,实验结果表明补料至总糖浓度为50%时赤藓糖醇产量最高为253 g/L,产率为1.03 g/(L.h)。但甘油产量与葡萄糖的浓度呈正相关,分批补料并不能有效抑制甘油的生成,反而导致发酵周期大大延长,对于工业化生产极其不利。通过对甘油的生成及消耗过程中关键酶胞浆3-磷酸甘油脱氢酶(ctGPD)、3-磷酸甘油酯酶(GPP)、线粒体3-磷酸甘油脱氢酶(mtGPD)酶活测定,确定胞浆3-磷酸甘油脱氢酶为甘油合成途径的关键酶,为以后对圆酵母B84512中甘油代谢途径的基因工程改造选育奠定了基础。  相似文献   

10.
Torulopsis sp.ERY237产赤藓糖醇工艺条件的研究   总被引:1,自引:0,他引:1  
以Torulopsis sp.ERY237作为出发菌株,考察了不同碳源、氮源、无机盐类以及温度等因素对菌种产赤藓糖醇的影响,建立和优化了赤藓糖醇摇瓶发酵培养基配方、发酵工艺条件,同时研究了发酵过程中菌体生物量、pH值、产物浓度的动态变化。结果表明,菌株的最适培养基配方为(g/L):葡萄糖300,玉米浆3.5,C_([Cu~(2+)])1.5,C_([Mn~(2+)])10;适宜的培养条件为初始pH值自然,温度30℃,装液量50 mL/500 mL,转速200 r/min,在此条件下培养132 h赤藓糖醇产量达87.8 g/L,是优化前产量的1.9倍,发酵时间缩短了12 h。  相似文献   

11.
解脂亚罗酵母E4-2是赤藓糖醇发酵原始菌株Y-22的高产突变株,可以在350 m~3发酵罐上以96 h的发酵周期产生19.3 g/100mL的赤藓糖醇,对葡萄糖的转化率达到56%,比原始菌株提高约20%。对6-磷酸葡萄糖脱氢酶(G6PDH)酶及赤藓糖还原酶(ER)酶活力的测定未表现出明显的变化。对线粒体DNA的RAPD的比较分析结果表明,其线粒体DNA的结构发生了显著的变化,故推测此变化是其发酵性状改变的主要原因。  相似文献   

12.
对酵母茵M-3进行了葡萄糖和木糖共发酵产乙醇条件的优化研究.结果表明,发酵的最优条件为:pH5,温度34℃,转速70r/min,初始糖浓度60g/L,葡萄糖与木糖的质量比为2:1.在该条件下,发酵所得燃料乙醇浓度为23.0g/L.糖醇转化率为38.3%.  相似文献   

13.
耐高渗酵母B845产赤藓糖醇的研究   总被引:9,自引:0,他引:9  
以自然界中筛选分离到的耐高渗酵母B8为出发菌株,经过紫外诱变,得到了赤藓糖醇产量较高的突变株B845。对B845进了一系列的发酵工艺条件试验。经初步研究,B845在葡萄糖20%,酵母膏0.5%,脲0.1%、pH6.0的发酵液中经35℃摇瓶5天,可产赤藓糖醇75mg/ml,对糖转化率41.2%。  相似文献   

14.
在恒定pH值条件下,利用同型乙酸菌热醋酸梭状芽胞杆菌(Clostridium thermoaceticum)进行葡萄糖分批发酵、补料分批发酵和木薯粉发酵醋酸的初步研究.最适发酵葡萄糖模式:补糖的同时加入3倍量的氮源和微量元素补料分批发酵.醋酸产量40.2g/L,葡萄糖利用率98%,葡萄糖转化率0.82g/g,发酵时间为216h.结合葡萄糖发酵特点和木薯粉酶解条件摸索出木薯粉发酵条件:木薯液化后直接加入适量的糖化酶进行发酵并在发酵过程中补加适量糖化酶使醪液中葡萄糖浓度保持在一定范围内.醋酸产量47.3g/L,葡萄糖利用率94.75%,葡萄糖转化率0.89g/g,发酵时间192h.不添加过量的氮源和微量元素同时省略了糖化工段,底物转化率提高时间缩短,是比较理想的发酵模式.  相似文献   

15.
利用蜂蜜接合酵母LGL-2可耐受高糖浓度、应激代谢合成海藻糖的特性,研究了不同发酵时间、接种量、培养温度、葡萄糖初始质量浓度、转速对蜂蜜接合酵母代谢积累产生海藻糖的影响,并通过响应面优化了发酵工艺参数。结果表明,在发酵96 h、接种量10%(体积分数)、葡萄糖初始质量浓度300 g/L、温度24℃、转速180 r/min的条件下,海藻糖的质量分数可达92.32 mg/g干酵母,相比优化前提高了29.34%,该研究为蜂蜜接合酵母的应用及海藻糖的生物合成提供了借鉴。  相似文献   

16.
采用响应面方法对高产海藻糖的酵母茵的培养条件进行了优化.通过Plackett-Burman(PB)设计法,评价了不同温度、pH、接种量、葡萄糖浓度、酵母抽提物浓度、无机氮源(NH4)2So4浓度和摇床转速等7个因素对海藻糖产量的影响.筛选出葡萄糖浓度、酵母抽提物浓度以及接种量为海藻糖生产过程中的主要影响因素,而其它因素对生产海藻糖的影响不显著.然后用旋转中心组合设计及响应面分析法确定了主要因素的最优条件,分别为葡萄糖浓度21.2 g/L,酵母抽提物浓度5.25 g/L,接种量10%.  相似文献   

17.
高产赤藓糖醇菌株RH-UV-L4-F9发酵条件的优化   总被引:1,自引:0,他引:1  
以高产赤藓糖醇菌株RH-UV-L4-F9为研究对象,采用生物统计方法分别对该菌株的发酵培养基和培养条件进行优化。发酵培养基最佳配比为葡萄糖30%,酵母膏0.5%,脲1%,MgSO_4 0.05%;最适发酵条件为34℃,初始pH值6.0.摇床转数180r/min。最适条件下赤藓糖醇产量为157.4mg/mL。  相似文献   

18.
在L-乳酸发酵生产中,用廉价的黄豆粉补充微量维生素液,替代培养基中昂贵的酵母粉,L-乳酸的产物浓度和得率与使用酵母粉相比相差不大。氮源经优化后,使用3.5%~4.5%的黄豆粉并添加最优剂量的8种维生素混合液,摇瓶实验,120 g/L葡萄糖转化得到104 g/L的L-乳酸,得率为86.7%;5 L发酵罐实验,3.5%的黄豆粉补充维生素混合液,初始葡萄糖浓度150 g/L,L-乳酸浓度为128 g/L,得率达到85.3%,基本达到了以酵母粉做氮源和生长因子的发酵指标。  相似文献   

19.
从腐烂的蔬菜中筛选到1株能发酵转化赤藓糖醇生产L-赤藓酮糖的菌株。基于形态学、生理生化鉴定及16S rRNA基因序列结果的分析,确定该菌属于醋酸杆菌科(Acetobacteraceae)葡萄糖酸杆菌属(Gluconobacter)kondonii,将其命名为HD385。进行初步发酵实验,该菌能以10%浓度的赤藓糖醇为底物发酵产生L-赤藓酮糖,产量达到82.9 g/L。  相似文献   

20.
为了提高1株光滑球拟酵母(Candida glabrata)高产突变菌株的丙酮酸产量和底物转化率,对发酵过程进行了系统优化。首先,对诱变筛选获得的7株菌株进行发酵验证,确定最佳菌株为C. glabrata 4H2。对种子培养基重要成分及浓度进行优化,确定最佳氮源为大豆蛋白胨,质量浓度为10 g/L。突变菌株在30℃条件下摇瓶发酵52 h,产量达到(48. 56±0. 46) g/L,生产强度为0. 93 g/(L·h),糖酸转化率为0. 46 g/g,比优化前分别提高了25. 0%、52. 5%和43. 8%。基于上述结果,在15 L发酵罐中进行发酵条件优化,确定了以初始葡萄糖质量浓度为80 g/L,当葡萄糖质量浓度剩余55 g/L时,恒速流加70 g/L葡萄糖的补料发酵工艺,最终丙酮酸的产量达到最高,为(86. 63±0. 29) g/L,较摇瓶水平提高了78. 4%,生产强度为1. 07 g/(L·h),糖酸转化率为0. 78g/g。研究表明,发酵过程优化强化光滑球拟酵母生产丙酮酸是一种有效的方法,该研究为进一步提升工业水平丙酮酸发酵性能奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号