首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an exergoeconomic analysis has been carried out and on the basis of this analysis it has been concluded that in terms of energy saving the glazed hybrid photovoltaic thermal (PVT) module air collector offers a greater potential compared to PV module. The experimental validation for glazed hybrid PVT module air collector has also been performed and it has been observed that there is a good agreement between the theoretical and experimental values with correlation coefficient in range of 0.96–0.99 and root mean square percentage deviation in range of 2.38–7.46. The experiments have been carried out on clear days during the month July 2010 to June 2011. For the validation of theoretical results with experimental results, a typical day of winter month (December 08, 2010) and summer month (April 11, 2011) has been considered. An experimental uncertainty for December and April month is 11.6% and 2.1% respectively. The annual overall thermal energy and exergy gain are 1252.0 kWh and 289.5 kW h respectively. The annual net electrical energy savings by glazed hybrid PVT module air collector is 234.7 kW h.  相似文献   

2.
This paper presents the analytical study of flat plate collector based on the computer‐based thermal models considering two different cases, case A (fully covered by glass) and case B (fully covered by photovoltaic (PV) module). These models are developed based on energy balance equations. An analytical expression for characteristic equation for photovoltaic–thermal flat plate collector has been derived as a function of design and climatic parameters. This paper shows the detailed analysis of energy, exergy and electrical energy by varying the number of collectors by considering four weather conditions (A, B, C and D type) for five different cities (New Delhi, Bangalore, Mumbai, Srinagar and Jodhpur) of India. It is observed that the collectors fully covered by PV module combine the production of hot water in addition to electricity generation and it is beneficial in terms of exergy, thermal energy and electrical energy gain. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, an attempt has been made to evaluate and compare the energy matrices of a hybrid photovoltaic thermal (HPVT) water collector under constant collection temperature mode with five different types of PV modules namely c-Si, p-Si, a-Si (thin film), CdTe and CIGS. The analysis is based on overall thermal energy and exergy outputs from HPVT water collector. The temperature dependent electrical efficiency has also been calculated under composite climate of New Delhi, India.It is observed that c-Si PV module is best alternative for production of electrical power. Maximum annual overall thermal energy and exergy is obtained for c-Si PV module. The maximum and minimum EPBT of 1.01 and 0.66 years on energy basis is obtained for c-Si and CIGS respectively, whereas on exergy basis maximum EPBT of 5.72 years is obtained for a-Si and minimum of 3.44 in obtained for CIGS PV module. EPF and LCCE increase with increasing the life time of the system.  相似文献   

4.
In this paper, the optimization of a solar photovoltaic thermal (PV/T) water collector which is based on exergy concept is carried out. Considering energy balance for different components of PV/T collector, we can obtain analytical expressions for thermal parameters (i.e. solar cells temperature, outlet water temperature, useful absorbed heat rate, average water temperature, thermal efficiency, etc.). Thermal analysis of PV/T collector depends on electrical analysis of it; therefore, five-parameter current–voltage (IV) model is used to obtain electrical parameters (i.e. open-circuit voltage, short-circuit current, voltage and current at the point which has maximum electrical power, electrical efficiency, etc.). In order to obtain exergy efficiency of PV/T collector we need exergy analysis as well as energy analysis. Considering exergy balance for different components of PV/T collector, we obtain the expressions which show the exergy of the different parts of PV/T collector. Some corrections have been done on the above expressions in order to obtain a modified equation for the exergy efficiency of PV/T water collector. A computer simulation program has been developed in order to obtain the amount of thermal and electrical parameters. The simulation results are in good agreement with the experimental data of previous literature. Genetic algorithm (GA) has been used to optimize the exergy efficiency of PV/T water collector. Optimum inlet water velocity and pipe diameter are 0.09 m s−1, 4.8 mm, respectively. Maximum exergy efficiency is 11.36%. Finally, some parametric studies have been done in order to find the effect of climatic parameters on exergy efficiency.  相似文献   

5.
Photovoltaic-thermal (PV/T) technology refers to the integration of a PV and a conventional solar thermal collector in a single piece of equipment. In this paper we evaluate the performance of partially covered flat plate water collectors connected in series using theoretical modeling. PV is used to run the DC motor, which circulates the water in a forced mode. Analytical expressions for N collectors connected in series are derived by using basic energy balance equations and computer based thermal models. This paper shows the detailed analysis of thermal energy, exergy and electrical energy yield by varying the number of collectors by considering four weather conditions (a, b, c and d type) for five different cities (New Delhi, Bangalore, Mumbai, Srinagar, and Jodhpur) of India. Annual thermal and electrical energy yield is also evaluated for four different series and parallel combination of collectors for comparison purpose considering New Delhi conditions. This paper also gives the total carbon credit earned by the hybrid PV/T water heater investigated as per norms of Kyoto Protocol for New Delhi climatic conditions. Cost analysis has also been carried out.It is observed that the collectors partially covered by PV module combines the production of hot water and electricity generation and it is beneficial for the users whose primary requirement is hot water production and collectors fully covered by PV is beneficial for the users whose primary requirement is electricity generation. We have also found that if this type of system is installed only in 10% of the total residential houses in Delhi then the total carbon credit earned by PV/T water heaters in terms of thermal energy is USD $144.5 millions per annum and in terms of exergy is USD $14.3 millions per annum, respectively.  相似文献   

6.
In this technical article, a novel experimental setup is designed and proposed to produce a hydrogen by using solar energy. This system comprises a hybrid or photovoltaic Thermal (PVT) solar collector, Hoffman's voltameter, heat exchanger unit and Phase Change Material (PCM). The effect of PCM and mass flow rate of water on the hybrid solar collector efficiency and hydrogen yield rate is studied. This experimental results clearly showed that by adding the thermal collector with water, decreases PV module temperature by 20.5% compared with conventional PV module. Based on the measured values, at 12.00 and 0.011 kg/s mass flow rate, about 33.8% of thermal efficiency is obtained for water based hybrid solar collector. Similarly, by adding Paraffin PCM to the water based thermal collector, the maximum electrical efficiency of 9.1% is achieved. From this study, the average value of 17.12% and 18.61% hydrogen yield rate is attained for PVT/water and PVT/water with PCM systems respectively.  相似文献   

7.
The photovoltaic thermal collector can provide thermal and heat power at the same time.In this paper, a photovoltaic/thermal sheet and tube collector has been numerically investigated. The paper focuses on the development of a hybrid solar collector PV/T. This model will be applied to optimize the operation of the PVT collector in the semi-arid climate. A mathematical model has been developed to determine the dynamic behavior of the collector, based on the energy balance of six main components namely a transparent cover, a PV module, a plate absorber, a tube, water in the tube and insulation. It has been validated by comparing the obtained simulation results with experimental results available in literature, where good agreement has been noted. Using our developed model, the heat and electrical power of sheet and tube collector has been analyzed for four typical days of year with the meteorological parameters of Monastir, Tunisia. Furthermore, the effect of solar radiation, the inlet water temperature, the number of glazing covers and the conductive heat transfer coefficient between plate absorber and PV module have been involved to identify their influence on the thermal and electrical efficiencies. The monthly thermal and electrical energies is also evaluated.  相似文献   

8.
In this paper, overall thermal energy and exergy analysis has been carried out for different configurations of hybrid photovoltaic thermal (PVT) array. The hybrid PVT array (10.08 m × 2.16 m) is a series and parallel combinations of 36 numbers of PV modules. A one-dimensional transient model for hybrid PVT array has been developed using basic heat transfer equations. On the basis of this transient model, an attempt has been made to select an appropriate hybrid PVT array for different climatic conditions (Bangalore, Jodhpur, New Delhi, and Srinagar) of India. On the basis of high grade energy (i.e. overall exergy gain), case-III has been selected as the most appropriate configuration because overall exergy for case-III is 12.9% higher than case-II. The overall thermal energy and exergy gain for Bangalore is 4.54 × 104 kW h and 2.07 × 104 kW h respectively which is highest in comparison to the other cities.  相似文献   

9.
Simultaneously generating both electricity and low grade heat, photovoltaic thermal (PVT) systems maximise the solar energy extracted per unit of collector area and have the added benefit of increasing the photovoltaic (PV) electrical output by reducing the PV operating temperature. A graphical representation of the temperature rise and rate of heat output as a function of the number of transfer units NTUs illustrates the influence of fundamental parameter values on the thermal performance of the PVT collector. With the aim of maximising the electrical and thermal energy outputs, a whole of system approach was used to design an experimental, unglazed, single pass, open loop PVT air system in Sydney. The PVT collector is oriented towards the north with a tilt angle of 34°, and used six 110 Wp frameless PV modules. A unique result was achieved whereby the additional electrical PV output was in excess of the fan energy requirement for air mass flow rates in the range of 0.03–0.05 kg/s m2. This was made possible through energy efficient hydraulic design using large ducts to minimise the pressure loss and selection of a fan that produces high air mass flow rates (0.02–0.1 kg/s m2) at a low input power (4–85 W). The experimental PVT air system demonstrated increasing thermal and electrical PV efficiencies with increasing air mass flow rate, with thermal efficiencies in the range of 28–55% and electrical PV efficiencies between 10.6% and 12.2% at midday.  相似文献   

10.
In this paper an attempt has been made to analyze the performance of semi transparent hybrid PVT double pass air collector. Based on the first law of thermodynamics, energy balance equations are for-mulated to derive the analytical expression for air temperature at the outlet, as a function of the design and climatic parameters for investigating the performance of semi transparent hybrid PVT air collector. The analysis is based on quasi-steady state condition. This paper shows the detailed analysis of energy and exergy of a semi transparent hybrid PVT double pass air collector and its comparison with single pass air collector for four weather conditions (a, b, c and d type) for five different cities (New Delhi, Bangalore, Mumbai, Srinagar, and Jodhpur) of India. It has been analyzed that if such systems are installed only at 10% of the total residential houses in Delhi, then the total carbon credits earned by the system is found to be Rs. 1767 millions in terms of thermal energy and Rs. 493 millions in terms of exergy for double pass air collector whereas Rs. 1528 millions in terms of thermal energy and Rs. 446 millions in terms of exergy for single pass air collector. The results clearly shows that hybrid PVT double pass air collector have better performance as compared to single pass air collector.  相似文献   

11.
The electricity conversion-efficiency of a solar cell for commercial application is about 6–15%. More than 85% of the incoming solar energy is either reflected or absorbed as heat energy. Consequently, the working temperature of the solar cells increases considerably after prolonged operations and the cell’s efficiency drops significantly. The hybrid photovoltaic and thermal (PVT) collector technology using water as the coolant has been seen as a solution for improving the energy performance. Through good thermal-contact between the thermal absorber and the PV module, both the electrical efficiency and the thermal efficiency can be raised. Fin performance of the heat exchanger is one crucial factor in achieving a high overall energy yield. In this paper, the design developments of the PVT collectors are briefly reviewed. Our observation is that very few studies have been done on the PVT system adopting a flat-box absorber design. Accordingly, an aluminum-alloy flat-box type hybrid solar collector functioned as a thermosyphon system was constructed. While the system efficiencies did vary with the operating conditions, the test results indicated that the daily thermal efficiency could reach around 40% when the initial water-temperature in the system is the same as the daily mean ambient temperature.  相似文献   

12.
In this paper, a study was carried out to evaluate the annual thermal and exergy performance of hybrid photovoltaic-thermal greenhouse dryer, located at IIT Delhi, India by considering various silicon and non-silicon-based photovoltaic (PV) modules namely mono crystalline silicon (c-Si), multi crystalline silicon (mc-Si), nano crystalline silicon, amorphous silicon, Cadmium Telluride and Copper Indium Gallium Selenide. The annual net electrical energy savings for these modules for a, b, c and d type weather conditions for New Delhi has been calculated. Embodied energy and annual energy outputs have been used for evaluation of energy matrices such as energy payback time, electricity production factor (EPF) and life cycle conversion efficiency (LCCE) of the system. The results also showed that EPF, LCCE, CO 2 mitigations and carbon credits earned, were maximum for c-Si-type PV module, and hence it was recommended for the proposed system.  相似文献   

13.
T.T. Chow  W. He  J. Ji  A.L.S. Chan 《Solar Energy》2007,81(1):123-130
The rapid development and sales volume of photovoltaic (PV) modules has created a promising business environment in the foreseeable future. However, the current electricity cost from PV is still several times higher than from the conventional power generation. One way to shorten the payback period is to bring in the hybrid photovoltaic–thermal (PVT) technology, which multiplies the energy outputs from the same collector surface area. In this paper, the performance evaluation of a new water-type PVT collector system is presented. The thermal collection making use of the thermosyphon principle eliminates the expense of pumping power. Experimental rigs were successfully built. A dynamic simulation model of the PVT collector system was developed and validated by the experimental measurements, together with two other similar models developed for PV module and solar hot-water collector. These were then used to predict the energy outputs and the payback periods for their applications in the subtropical climate, with Hong Kong as an example. The numerical results show that a payback period of 12 year for the PVT collector system is comparable to the side-by-side system, and is much shorter than the plain PV application. This is a great encouragement in marketing the PVT technology.  相似文献   

14.
In this communication, a study is carried out to evaluate an annual thermal and exergy efficiency of a hybrid photovoltaic thermal (HPVT) air collector for different Indian climate conditions, of Srinagar, Mumbai, Jodhpur, New Delhi and Banglore. The study has been based on electrical, thermal and exergy output of the HPVT air collector. Further, the life cycle analysis in terms of cost/kWh has been carried out. The main focus of the study is to see the effect of interest rate, life of the HPVT air collector, subsidy, etc. on the cost/kWh HPVT air collector. A comparison is made keeping in view the energy matrices. The study reveals that (i) annual thermal and electrical efficiency decreases with increase in solar radiation and (ii) the cost/kWh is higher in case of exergy when compared with cost/kWh on the basis of thermal energy for all climate conditions. The cost/kWh for climate conditions of Jodhpur is most economical.  相似文献   

15.
Photovoltaic-thermal collectors (or PV-T collector) are hybrid collectors where PV modules are integrated as an absorber of a thermal collector in order to convert solar energy into electricity and usable heat at the same time. In most of the cases, the hybrid collectors are made by the superposition of a PV module on the thermal absorber of a solar collector. In this paper, the approach is different and is to analyze thermal and optical properties related to both PV and solar thermal functions in order to identify an optimum combination leading to a maximum overall efficiency. Indeed, although these two functions do not exploit the same range of radiation wavelengths, thermal and PV functions are not so complementary due to photo-conversion thermal dependency. In this context, an alternative PV cell lamination has been developed with increased optical and thermal performance. The improvements were evaluated around 2 mA/cm2 in terms of current density in comparison to a standard module encapsulation. Based on this technique, a real size PV-T module has been built and tested at Fraunhofer solar test facilities. The results show a global efficiency of the PV-T collector above 87% (79% thermal efficiency plus 8.7% electrical efficiency, based on the absorber area).  相似文献   

16.
In this paper, an exergetic optimization has been developed to determine the optimal performance and design parameters of a solar photovoltaic thermal (PV/T) air collector. A detailed energy and exergy analysis has been carried out to calculate the thermal and electrical parameters, exergy components, and exergy efficiency of a typical PV/T air collector. The thermal and electrical parameters of a PV/T air collector include solar cell temperature, back surface temperature, outlet air temperature, open‐circuit voltage, short‐circuit current, maximum power point voltage, maximum power point current, etc. An improved electrical model has been used to estimate the electrical parameters of a PV/T air collector. Furthermore, a new equation for the exergy efficiency of a PV/T air collector has been derived in terms of design and climatic parameters. A computer simulation program has been also developed to calculate the thermal and electrical parameters of a PV/T air collector. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Moreover, the simulation results obtained in this paper are more precise than the one given by the previous literature, and the new exergy efficiency obtained in this paper is in good agreement with the one given by the previous literature. Finally, exergetic optimization has been carried out under given climatic, operating, and design parameters. The optimized values of inlet air velocity, duct length, and the maximum exergy efficiency have been found. Parametric studies have been also carried out. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Solar photovoltaic-thermal (PV/T) collectors, are hybrid collectors used to convert solar radiation into usable thermal and electrical energy. Recently, the field of research on PV/T is has focused on improving the efficiency of the PV/T collector by replacing the conventional heat transfer fluids (HTFs) with nanofluids. This article investigates the effect of hybrid nanofluids mixture ratio on the useful energy and overall efficiency of a PV/T collector operating with Al2O3-ZnO water nanofluid as the HTF. Experiments to measure the thermophysical properties of the hybrid nanofluids were conducted for various temperatures, volume concentrations, and mixture ratios, furthermore, accurate correlation models were proposed. Metrological data and energy output readings collected from the PV solar farm at Cyprus International University were used to validate our model. The study observed that at the optimum mixture ratio (0.47 of Al2O3 in the hybrid), the electrical, thermal, and exergy efficiencies of the PV/T collector are 13.8%, 55.9%, and 15.13% respectively. Also, the cell temperature drops by 21% when the mass flow rate is 0.1 kg/s as compared to when it is 0.01 kg/s. Finally, the study concludes that by using the Al2O3-ZnO hybrid nanofluid an overall peak thermal efficiency of 91% can be attained, and this represents a 34% enhancement in the collector's performance when compared to water.  相似文献   

18.
19.
The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic–thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab.PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional “side-by-side” thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-familiar residency in Lisbon, with p-Si cells, and a collector area of 6 m2. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well.The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号