首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report on the electrical transport properties of single multiwall carbon nanotubes with and without an iron filling as a function of temperature and magnetic field. For the iron filled nanotubes the magnetoresistance shows a magnetic behavior induced by iron, which can be explained by taking into account a contribution of s-d hybridization. In particular, ferromagnetic-like hysteresis loops were observed up to 50 K for the iron filled multiwall carbon nanotubes. The magnetoresistance shows quantum interference phenomena such as universal conductance fluctuations and weak localization effects.  相似文献   

2.
Films of carbon nanotubes oriented perpendicularly to the substrate surface and filled with iron nanoparticles have been synthesized and studied. Morphological features of these nanocomposite films lead to the appearance of an easy magnetization axis, which is perpendicular to the film plane. A method for enhancement of this effect is suggested and successfully tested.  相似文献   

3.
Carbon nanotubes (CNTs) and carbon black (CB) filled powder styrene-butadiene rubber (SBR) composites were prepared by spray drying of the suspension of CNTs and CB in SBR latex. The powders were sphere like and fine with uniform diameters of 10-15 μm. Experimental results showed that the introduction of CNTs into the matrix was beneficial to improve the security of the vulcanization of the rubber composites, and the dynamic and basic mechanical properties of the CNTs/SBR composites were better than those of CB/SBR and neat SBR composites. Observations on the microstructure of the composites indicated that CNTs were well dispersed in the matrix. Morphology of the fracture confirmed that the bonding between CNTs and rubber matrix was strong and load can be transferred to CNTs efficiently during the mechanical property tests. Moreover, the powder SBR composites containing well-dispersed CNTs could be perfect candidate as additives for other polymers.  相似文献   

4.
纳米碳管内包覆外来物质的研究进展   总被引:6,自引:7,他引:6  
纳米碳管具有纳米尺度的准一维中空结构,这使得在其中空管腔内填充外来物质成为可能。填充纳米碳管的理化性能与填充物的种类、结构、组分密切相关,因而人们可以根据需要自主设计和组装各种类型的填充纳米碳管。通过综述目前在纳米碳管内填充外来物质领域的研究动态,介绍填充预先制备的纳米碳管和在制备纳米碳管的过程中同时包覆外来物质的各种物理和化学制备方法及其可能的微观机制,阐述了这类被填充的纳米碳管在电子工业、信息技术、生物化学以及医学等领域的应用前景,并对今后尚待开展的纳米碳管与填充物质的相互作用规律、这种量子线的物理性能及其阵列的制备技术等研究工作进行了探讨和展望。  相似文献   

5.
Abstract

The main objective of the present paper is to develop high wear resistance carbon fibre reinforced polyether ether ketone composite with addition of multiwall carbon nanotubes. These compounds were well mixed in a batch mixer, and compounded polymers were fabricated into sheets of known thickness by compression moulding. Samples were tested for wear resistance with respect to different concentration of fillers. The wear resistance properties of these samples depend on filler aspect ratio. Wear resistance of composite with 20 wt-% of carbon fibre increases when multiwall carbon nanotubewas introduced. The worn surface features have been examined using scanning electron microscope. Photomicrographs of the worn surfaces revealed higher wear resistance with the addition of carbon nanotube. Also better interfacial adhesion between carbon and vinyl ester in carbon reinforced vinyl ester composite was observed.  相似文献   

6.
用于电磁波吸收的碳纳米管水泥基复合材料   总被引:2,自引:0,他引:2  
王宝民  郭志强  韩瑜  LAI Fook Chuan  张婷婷 《功能材料》2013,44(9):1239-1243,1248
采用弓形法对多壁碳纳米管(MWCNTs)水泥基复合材料的吸波性能进行了实验研究。结果表明,当MWCNTs掺量为0.6%(质量分数)时,厚度为25mm的试样在2.9GHz处获得最强吸收峰值-28dB,并能够在2~8GHz范围内对出现在吸收峰值附近的电磁波进行充分吸收;厚度为35mm的试样在8~18GHz表现出良好的宽频吸波性能。当MWCNTs掺量为0.9%(质量分数)时,水泥基复合材料在8~18GHz低于-10dB的带宽达到7.1GHz。力学强度测试结果表明MWCNTs在一定掺量范围内改善了水泥基材料的力学强度,但掺量的继续增大会导致力学强度的下降。MWCNTs掺量为0.9%(质量分数)的水泥砂浆抗压强度为60.2MPa,抗折强度为10.2MPa,虽然较空白试样有所下降,但仍有较高的力学强度。  相似文献   

7.
In this work the internal channels of the single-walled carbon nanotubes (SWCNTs) were filled with cadmium chloride, cadmium bromide, and cadmium iodide by a capillary method using melts of these salts. The influence of incorporated chemical compounds on the electronic properties of the carbon nanotubes was investigated by optical absorption spectroscopy, Raman spectroscopy, near edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. It was found that there is the chemical bonding between carbon atoms of nanotube walls and metal atoms of encapsulated CdX2 nanocrystals. The obtained data testify acceptor doping effect of cadmium halogenides incorporated into the SWCNT channels, which is accompanied by the charge transfer from nanotube walls to introduced substances.  相似文献   

8.
The Fe2O3 nanoparticles have been introduced into the multi-walled carbon nanotubes (MWCNTs) via wet chemical method. The resulting products are characterized by TEM, EDX, XRD and VSM. The magnetic MWCNTs have been employed as adsorbent for the magnetic separation of dye contaminants from water. The adsorption test of dyes (Methylene Blue and Neutral Red) demonstrates that it only takes 60 min to attain equilibrium and the adsorption capacities for Methylene Blue and Neutral Red in the concentration range studied are 42.3 and 77.5 mg/g, respectively. The magnetic MWCNTs can be easily manipulated in magnetic field for desired separation, leading to the removal of dyes from polluted water. The integration of MWCNTs with Fe2O3 nanoparticles has great potential application to remove organic dyes from polluted water.  相似文献   

9.
This paper reports on the development of electrically conductive nanocomposites containing multi-walled carbon nanotubes in an unsaturated polyester matrix. The resistivity of the liquid suspension during processing is used to evaluate the quality of the filler dispersion, which is also studied using optical microscopy. The electrical properties of the cured composites are analysed by AC impedance spectroscopy and DC conductivity measurements. The conductivity of the cured nanocomposite follows a statistical percolation model, with percolation threshold at 0.026 wt.% loading of nanotubes. The results obtained show that unsaturated polyesters are a matrix suitable for the preparation of electrically conductive thermosetting nanocomposites at low nanotube concentrations. The effect of carbon nanotubes reaggregation on the electrical properties of the spatial structure generated is discussed.  相似文献   

10.
单壁碳纳米管-聚合物复合导电薄膜的制备   总被引:1,自引:2,他引:1  
基于聚合物乳液法,将单壁碳纳米管(SWCNTs)在阿拉伯树胶溶液中经过超声波振荡剥离后,与聚合物乳液直接混合,然后在室温下成膜,制备出了电渗流阈值为0.03%的SWCNTs-苯丙乳液复合导电薄膜,研究了SWCNTs在聚合物中形成导电网络的过程.TEM观察表明:在超声波和阿拉伯树胶溶液的共同作用下,单壁碳纳米管首先由束状被剥离成单根;进一步作用后其表面被缠绕包覆了一层阿拉伯树胶分子;添加其到聚合物乳液中,当添加量达到渗流阈值时,在聚合物乳液的成膜过程中SWCNTs会互相连接形成导电网络.  相似文献   

11.
This work focused on the fracture mechanisms and reinforcing effects of ozone-treated multi-walled carbon nanotubes (MWCNTs) in epoxy matrix. Ozone functionalization of MWCNTs was found to be of help for a better dispersion and stronger interfacial bonding with epoxy matrix, which in turn improve the strength and fracture toughness of the resin. The MWCNT/epoxy composites showed complicated failure modes than the conventional fibrous composites, which have been quantitatively investigated and correlated with the fracture toughness of the nanocomposites studied.  相似文献   

12.
13.
Flexible polyurethane (PU) foams, with loading fractions of up to 0.2 wt% carbon nanotubes (CNTs), were made by free-rising foaming using water as blowing agent. Electron microscopy revealed an open cellular structure and a homogeneous dispersion of CNTs, although the incorporation of nanofiller affected the foaming process and thus the final foam density and cellular structure. The compressive response of the foams did not show an unambiguous improvement with CNT content due to the variable foam structure. However, dense films generated by hot pressing the foams indicated a significant intrinsic reinforcement of the polymer, even at low loadings of CNTs. Most significantly, CNTs were found to increase the acoustic activity monotonically at concentrations up to 0.1 wt%.  相似文献   

14.
In this study, we investigated the peculiarities of moisture absorption and moisture-induced effects on the elastic and viscoelastic flexural properties of epoxy resin and carbon fibre reinforced plastic (CFRP) filled with multiwall carbon nanotubes (MWCNTs). Short-term cyclic creep-recovery tests of moistened epoxy and CFRP filled with MWCNTs revealed improvements in creep resistance for both materials. The addition of MWCNTs to the epoxy resin suppressed the moisture absorption by the material, causing a reduction in the diffusion coefficient by 31% and equilibrium moisture content by 15%. The addition of MWCNTs reduced the flexural strength of moistened epoxy and CFRP samples by approximately half, and also lowered the flexural modulus by ∼1.4 and ∼3 times, elastic strain by 1.25 and 1.04 times, viscoelastic strain by 1.39 and 1.03 times, and plastic strain by 2.68 and 1.60 times, respectively.  相似文献   

15.
16.
报道一种直接合成纳米碳管衍生材料的方法.利用纳米碳管的表面张力和毛细管作用,经过注入和选择冲洗法的两步法,制备填充铁、钴和镍的纳米碳管.通过选择合适的注入和洗脱溶液,金属粒子只会填充在纳米管内部.使用扫描电镜和扫描透射电镜研究证实金属粒子仅存在于纳米碳管内部.  相似文献   

17.
The percolation behaviour of the hybrid composites of polypropylene glycol (PPG) filled with multiwalled carbon nanotubes (MWCNTs) and Laponite RD (Lap), or with MWCNTs and organo-modified Laponite (LapO) was studied by wide angle X-ray diffraction (XRD), microscopic image analysis, and electrical conductivity measurements. Cetyltrimethylammoniumbromide (CTAB) was used as an organo-modifier of Laponite. The Lap and LapO were found to have rather different affinity to PPG. XRD data have evidenced finite PPG integration inside Lap and complete exfoliation of LapO stacks in a PPG matrix. In PPG + MWCNT composites containing no Lap or LapO, increase of MWCNT concentration above the critical value Cp ∼ 0.4 wt% resulted in percolation. The value of the percolation threshold, Cp, was practically the same for hybrid PPG + MWCNT + Lap composites. However, it noticeably decreased (Cp ∼ 0.2 wt%) in PPG + MWCNT + LapO materials. The observed behaviour of the percolation threshold may be attributed to the effects exerted by LapO on the size of MWCNT aggregates, state of their dispersion and homogeneity of their spatial distribution.  相似文献   

18.
Atmospheric pressure filamentary dielectric barrier discharge (APDBP) treatment was adopted to modify the surface of the multi-walled carbon nanotubes (MWCNTs), altering the miscibility of MWCNTs with bismaleimide (BMI) matrix and the effects of this treatment on friction and wear properties of MWCNTs/BMI composites were investigated. Dynamic mechanical analysis (DMA), scanning electron microscope (SEM) images of the fractured surface and the worn surface were adopted to figure out the possible friction and wear mechanism of the composite. It is found that BMI composite with APDBD treated MWCNTs exhibits a lower friction coefficient value and a lower wear loss rate value than the composite with original MWCNTs, which can be related to the higher degree of crosslink of the resin and also better interfacial adhesion between MWCNTs and the BMI matrix.  相似文献   

19.
The electrical properties of an epoxy resin filled with carbon fibers were studied. By discharging a high voltage through the composite it was found that the resistivity of the composite decreased. This effect was attributed to local dielectric breakdown of polymer layer between carbon fibers. The conduction mechanism of common and breakdown composites was studied by means of exploring of current-voltage characteristics and the frequency dependence of resistivity. A positive temperature coefficient (PTC) effect of resistivity behavior was observed both for common and breakdown samples.  相似文献   

20.
Biological properties of carbon nanotubes   总被引:1,自引:0,他引:1  
Carbon nanotubes are novel materials with unique physical and chemical properties, and have been considered for use in numerous technological applications. More recently, attention has turned to the unique biological and medical properties of these materials. In this review, the processing, chemical properties, physical properties, nucleic acid interaction, cell interaction, and toxicologic properties of nanotubes are described. Finally, future directions in this area are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号