首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work aims to enhance the energy yield of ozone production via packed-bed reactors. It has been experimentally demonstrated that ozone concentration and corresponding energy yield achieved by packed-bed reactors are significantly higher than that achieved by DBD only. The so-called packed-bed reactor is constructed by packing granular dielectric pellets within a DBD reactor. Two kinds of dielectric materials including glass beads and Al2O3 pellets are tested. Experimental results indicate that an ozone generator packed with Al2O3 pellets results in a higher ozone production compared with one packed with glass beads. The maximum ozone production takes place when Al2O3 pellets with diameter of 2 mm are packed. The maximum ozone concentration, ozone production rate, and energy yield achieved in this study are 61 gO3/m3, 3.7 gO3/hr, and 173 gO3/kWh, respectively. The highest ozone concentration and energy yield achieved with the packed-bed reactor are about 8 and 12 times high as those with DBD reactor, respectively. Although the packed-bed reactors have a shortcoming of high temperature, it can be solved by adding a cooling system and the ozone generation can be improved thereof. As a result, the packed-bed reactor is a promising and state-of-the-art technology for ozone generation based on this study.  相似文献   

2.
Ozone generation by negative DC corona discharge in N2-O2 mixtures has been experimentally investigated using a coaxial wire-cylinder corona reactor operating at room temperature and atmospheric pressure. The experiments have been carried out under different gas flows (15 cm3 min?1 to 200 cm3 min?1) and gas compositions (5% to 90% of O2), and the effect of these parameters on the corona current, the ozone density and the efficiency of the ozone generator have been analyzed. The global rate coefficients for ozone formation and destruction have also been evaluated, and their values compared with those reported by other authors. The maximum efficiency for ozone production was found in gas mixtures with oxygen content about 70–80%.  相似文献   

3.
4.
Factors that affect the performance of an expanded-mesh dielectric barrier discharge ozone cell were investigated. A gas feed pf 94% O2, 4% Ar and 1% N2 was used. An improvement in the productivity (g ozone/kWh) of about 20 % was achieved by doubling the gas flow rate through the cell. Decreasing the cell operating frequency (in the range 72 kHz to 19 kHz) increased the productivity of the ozone generator at constant power. The ozone production increased approximately in proportion to the input power; however productivity did not vary significantly with power above a minimum level. As the cell voltage was increased the dependence of productivity on power or frequency was reduced. Changing the feed gas temperature between ? 5°C and + 42°C had no effect on productivity. Finer meshes drew more power than coarser ones for a given voltage. Using a thinner mesh for the centre electrode increased productivity. The best results were obtained with a 6 × 3 × 1.86 mm titanium mesh giving a productivity of 110 g ozone/kWhr at 30–60 W, 1500–1900V and 23 KHz.  相似文献   

5.
We have been researching ozone storage using a silica gel that functions as an adsorbent. We found that ozone stored in silica gel was, once released, higher in concentration than the original ozone that was produced by an ozone generator powered by an electrical discharge. Additionally, this method of storage led to an increase in ozone concentration without the need for any additional energy. When ozone was stored in silica gel, it changed from a gaseous state to a liquid state via a vapor state in narrow capillaries according to Kelvin's law. When ozone was desorbed, it was concentrated depending on the changing of the form from a liquid state to a gaseous state via a supercritical fluids state in the narrow capillaries.  相似文献   

6.
The parameters, which determine the performance of ozone generators, are efficiency and maximum ozone concentration. The efficiency from oxygen has been found to be nearly independent on the kind of barrier discharge arrangement (volume, surface, coplanar), while the ozone concentration saturation level depends on the specific design of the generator. These phenomena are explained with features of the discharge process and the properties of chemical reactions, respectively. The importance of a limit in the energy density of the discharge is highlighted.  相似文献   

7.
An ozone generator using a rotating electrode to improve ozone generation efficiency is proposed. The ozone generator electrode unit consists of a rotating electrode and fixed electrode. The rotating electrode has the grounded 36 pieces of tungsten wires fixed in parallel to the rotation axis on the rotating cylinder surface. A dielectric electrode is used as a fixed electrode located on the inside of the tube of the electrode unit. The width of the apparent discharge gap is 1mm. Alternating current with a frequency of 50 Hz is applied to the electrode unit. The rotation speed can be adjusted from 0 rpm to 1200 rpm by a variable speed motor. Oxygen gas is used as the material gas. Higher ozone concentration and higher ozone generation efficiency are obtained compared with that when the rotation speed is 0 rpm. The gas temperature is measured at the inlet and outlet of the ozone generator, and the rotation speed for the cooling effect is most effective at about 500 rpm. The maximum generation efficiency is estimated to be 61 g/kWh at 800 rpm, and this value is twice as large as in the case of 0 rpm.  相似文献   

8.
This paper reports the ozone generation in pulsed multichannel dielectric barrier discharge. The influence of nitrogen addition (0.1%–10%) on ozone concentration and ozone generation efficiency in nitrogen–oxygen gas mixtures is studied. Results show that adding 0.1% N2 would not seriously increase the ozone production. Meanwhile, 1% N2 content exhibits the highest ozone production efficiency in low SIE (J/L, defined as the ratio of power to gas flow rate) region (0–200 J/L) while adding 0.3% N2 would lead to the highest ozone generation efficiency in high SIE region (300–800 J/L). The increase of ozone production induced by N2 addition is more significant in low SIE region compared with that in high SIE region. At 100 J/L, ozone production efficiency increases 26.9% to 201.6 g/kWh with 1% N2 addition when compared with that in oxygen. At 18 J/L, the observed maximum ozone generation efficiency reaches 252 g/kWh at 1.3 g/Nm3 with 1% N2 addition. An increase of ozone production can be obtained with 0.3%–2% N2 addition in all explored SIE ranges.  相似文献   

9.
A new technique of using ozone for water treatment is presented. This new technique consists of using a three-step-process composed firstly of ozone adsorption on an appropriate adsorbent, secondly water treatment, and thirdly regeneration of the adsorbent. Results regarding ozone adsorption (the first step) are presented in this paper. Different types of silica gel and a type of TiO2 have been tested for ozone adsorption. It was found that the physical characteristics of the silica gel affect its capacity for ozone. Titanium dioxide has shown ozone decomposition instead of adsorption as it contains Lewis acid sites. An exponential decrease of the silica gel capacity with its moisture content has been found. Linear isotherms in the range of ozone concentrations less than 100?g/m3 NTP have been found. A particle diffusion model with linear equilibrium isotherm has been used to model the breakthrough curves in fixed bed columns.  相似文献   

10.
The gap distance, electrode material, voltage and gas flow velocity were optimized with gas pressure variation of dielectric barrier discharge (DBD) for producing high concentration of ozone. There exists an optimum gas pressure at which the highest ozone concentration is produced with other parameters being fixed. This optimum gas pressure value changes accordingly as the other parameters changed. As the discharge continues at the optimum pressure, the ozone concentration could increase or decrease slowly. This aging effect has different characteristics with the metal electrode material and the impurity level of the oxygen gas used for ozone generation. The aging effect is supposed to be related with the catalytic effect of metal oxide, which is generated in the discharge zone. The change in the characteristic of optimum pressure by the other parameters, indicate that the ozone concentration is deeply related with the filament self-organization characteristics of DBD. At the final optimized condition, the ozone concentration was higher than 22.5 wt.%.  相似文献   

11.
Ozone generation in both positive and negative corona discharges DC corona, both operated in glow regime, feed by dry CO2 has been studied. Higher ozone concentrations were observed in negative corona discharges. Ozone formation was found to be strongly dependent upon both the flow rate of the gas and on the radius of the outer electrode. The physical characteristics of the discharge were monitored through measurement of the discharge current. Small increases in the gas flow rate were observed to cause a significant increase in the discharge current of a negative corona discharge but little/no effect was observed in positive corona.  相似文献   

12.
Experiments using an ozone generator which has a fine steel wire electrode are described. Various conditions of the wire electrode ozone generator such as wire diameter, volume density of wire electrode, applied voltage and the effects of SF6 addition also are reported. The efficiency of the wire electrode ozone generator in air exceeded that of the usual ozone generator for 0.1 mm wire diameter and 0.156 g cm?3 volume density of wire over the entire range of applied voltage. This efficiency increases by adding 0.08% SF6 in air. Increase of ozone and NOX formation in the air ozone generator can be explained by the reactions of O2 and activated N2.  相似文献   

13.
Ozone generation in a negative corona discharge has been experimentally investigated using both a pure oxygen and in binary mixtures of oxygen with several gases. The concentration of ozone (O3) in such mixtures is found to be dependent both on the input energy density η, dissipated in unit volume of gas mixture and on the type and the concentration of the additives. The experimentally measured dependencies of ozone concentration on the input energy density (O3) = f(η) have been fitted using the Vasiliev–Kobozev–Eremin formula and the specific rate coefficients for ozone formation Kf and ozone decomposition Kd have been calculated. Using Ar, N2 or CO2 as admixtures, an increase in the specific rate coefficient for ozone generation was observed for increasing concentrations of added gaseous impurity into oxygen. In contrast, admixtures with SF6 or CCl2F2 caused a substantial reduction of Kf values. The absolute values of ozone concentration at constant input energy density were observed to decrease with decreasing concentrations of oxygen in all mixtures.  相似文献   

14.
The Steady radial distribution of chemical species in a wire‐to‐cylinder ozone generator filled with pure oxygen has been computed by applying four different plasma chemistry models of increasing complexity. The most complete model considers ten species (e, O2 +, O2 ?, O3 ?, O?, O2, O2(1Δg), O2(1g +), O and O3) and 79 reactions, including ionization by electron impact, electron attachment and detachment, electron-ion recombination, charge transfer, etc. The chemical model is coupled with the electrical model through Poisson's equation. The spatially averaged ozone density has been computed as a function of the current intensity and compared with the experimental values obtained by UV spectroscopy.  相似文献   

15.
The catalytic decomposition of ozone on an α-Fe2O3 catalyst has been investigated within the temperature range 23-65°C. A high initial decomposition degree followed by a decrease is observed. It is found that the water vapor in the air-ozone mixture exercises almost no effect on the process. IR-spectroscopy has shown that the nitrogen oxides formed in the ozone generator are the main reason for the deactivation of the catalyst. A scheme of the deactivation process is proposed.  相似文献   

16.
Coplanar discharge is a new type of barrier discharge, and has some advantages for high-concentration ozone generation. In this article, basic parameters of coplanar discharge are clarified by experimental and theoretical approaches. Coplanar electrodes consist of many pairs of line electrodes printed on a glass plane, and are covered with dielectric layer. The discharge properties, ozone diffusion process, and surface reaction are discussed. Finally, the scaling rule of a coplanar discharge ozone generator is demonstrated by fabrication of a 3 kg/h ozone generator.  相似文献   

17.
A detailed reaction kinetic model consisting of 10 species and 63 reactions is developed to investigate the energy conversion and temperature dependence in an ozone generator using oxygen pulsed discharge. The energy conversion ratios of total electric energy converted into reaction heat, heat carried by gas and heat loss to ambient, namely ηreaction, ηgas and ηloss, are obtained for the first time. The ratio of reaction heat ηreaction decreases substantially with increasing specific energy and inlet gas temperature, which represents how much energy is utilized effectively to synthesize ozone. Correspondingly, ηloss and ηgas increase gradually. ηreaction declines from 55.4% to 27.7% at inlet gas temperature of 298 K when specific energy changes from 0.06 J/cm3 to 0.78 J/cm3. The detailed reaction pathway including the degree of transformation among species for ozone formation is also obtained via kinetics simulation. Meanwhile, sensitivity analysis and rate-of-production analysis for the four most important species O3, O, O(1D) and O2(b1∑) obtained from the reaction pathway are executed to understand quantitatively the temperature dependence of sensitivity coefficient and production rate for each individual reaction. The production rate of ozone via the most important ozone generation reaction O+O2+O2 = > O3+O2 increases linearly with the increase of gas temperature, as well as the destruction rates of ozone via the most important ozone decomposition reactions O3+O3 = > O2+O2+O2 and O3 + O = > O2(b1∑)+O2.  相似文献   

18.
The use of silica gel for the storing of ozone was investigated. The ozone gas that was discharged from the silica gel was found to be different from normal ozone which is generated by the ozone generator that makes ozone with electric discharge. Ozone clusters could be synthesized by this method, which detaches ozone from silica get without requiring any additional energy. These ozone clusters didn't decompose at room temperature and atmospheric pressure over a half-day. We confirmed that the cluster was heavier than a heavy standard gas, the presence of clusters with an analysis using GC/MS, and the existence of ozone clusters by the bonding energy using a computer simulation by MOPAC.  相似文献   

19.
The catalytic role of using inert gases to increase the efficiency and lower the power cost of producing ozone (O3) from high purity oxygen (O2) in a process incorporating an electrical discharge is demonstrated. Three inert gases (Ar, Ne, He) and N2 are individually mixed with O2 and the results presented. The increase in ozone production is partially attributed to the increase in electron density provided by the ionization of the inert gas in the discharge.  相似文献   

20.
Assessments of ozone yield and concentration in Dielectric Barrier Discharge of argon-oxygen mixtures in presence of various packing materials are discussed. These include zeolite molecular sieve 13X pellets, Pyrex beads, Pyrex wool, and porous TiO2-beads, which presented differential reactive surfaces, nano cavities, photo-catalysis, and dissimilar ionic environments. Their utility was evaluated in conjunction with varied gas composition, flow rate, and electrical inputs. In a mixture of 3–21% O2 in argon, the ozone concentration ranged between 16–980 ppm, simultaneous measurements of in situ energy dissipation revealed its yield, G(O3) to change independently from 0.002 to 2.020 μmol J?1. TiO2 packing emerged as the most versatile material to produce O3 in high concentration and yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号