首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
《炼铁》2018,(4)
针对邯钢1号高炉稳定性降低、生产指标下滑的状况,高炉生产技术人员积极转变操作理念和思路,运用炉腹煤气量指数和透气阻力系数来优化高炉操作,高炉的稳定性及各项技术经济指标得到明显改善。实践表明,1号高炉炉腹煤气量在7500~7700m3/min、炉腹煤气量指数在59~62m/min、透气阻力系数在3.4~3.7,高炉日产量较调整前提高329 t/d、燃料比降低11 kg/t、焦比降低34 kg/t、煤比提高23 kg/t。  相似文献   

2.
杨志荣 《钢铁》2015,50(1):31-36
 通过太钢2座4 350 m3高炉生产、操作炉型监控和维护的实践,认识到高炉上下部操作炉型之间有密切的相互作用关系,其对炉缸寿命有一定的影响。高炉上部的操作炉型受到炉腹煤气量、炉身部位耐火材料的选择以及炉身冷却水流向的影响。适当的炉腹煤气量、减少冷却板与砖衬间可能形成的窜气通道、冷却水横向分段、分区冷却有助于形成合理的上部操作炉型。炉身操作炉型与渣皮厚度具有相互作用关系,风口以上操作炉型对炉缸炉底的侵蚀和结厚也存在相互作用关系。通过维持炉芯死焦堆透气透液性、高炉炉身硬质压入以及钒钛矿护炉等措施,维持合理的上、下部操作炉型,改善了炉况顺行和操作指标,同时减缓炉缸侧壁的侵蚀。  相似文献   

3.
从设计高炉出发,基于液泛现象和流态化现象的临界条件确定最大炉腹煤气量,用高炉炉腹煤气量指数验证计算的合理性,而最大炉腹煤气量对应于最大鼓风量。在本设计高炉冶炼条件下,为避免流态化现象和液泛现象的发生,冶炼1t生铁所允许的最大炉腹煤气量为1 444.59m3,最大鼓风量为1 107.64m3。  相似文献   

4.
基于炉腹煤气量及炉腹煤气量指数的计算,结合当前原燃料条件,探讨了首钢股份3号高炉合理的入炉风量及合理的煤比.通过统计近2年来3号高炉的炉腹煤气量及炉腹煤气量指数,试图解析利用系数与炉腹煤气量指数的关系、焦比与煤比的关系.结果 表明,利用系数随着炉腹煤气量指数的提高而提高,但炉腹煤气量指数的提高到一定程度后,利用系数提高...  相似文献   

5.
徐辉  邹宗树 《中国冶金》2008,18(1):24-24
根据高炉的炉料平衡,对典型高炉不同区域内的炉渣碱度进行计算。分析结果显示,在大喷煤条件下,传统的高炉配料方式导致炉内渣碱度变化很大,减少了高炉内气 液 固相共存区,降低了高炉下部的透气性。通过风口向炉内喷吹石灰粉来平衡喷煤灰分的碱度,可实现减少炉腹渣量、减缓炉内渣碱度波动、提高软熔带、扩大三相共存区、增加下部透气性、提高煤粉燃烧性、保证高炉顺行和提高高炉产量。  相似文献   

6.
雷鸣  张明星  杜屏  邱辉 《钢铁》2015,50(5):26-29
 沙钢5 800 m3高炉开炉至今,运行状况良好,在长期实践中,摸索出了合理的喷煤比。在保证氧过剩系数、理论燃烧温度和透气阻力系数的前提下,提出合理的喷煤比还应保证合适的炉腹煤气量指数。根据沙钢5 800 m3高炉的实际操作数据,提出氧过剩系数应高于0.71,理论燃烧温度约为2 350 ℃,透气阻力系数约为1.8~2.0。研究发现,由于5 800 m3高炉的炉缸直径偏小,合理的炉腹煤气量指数应在68 m/min以内。该高炉在原燃料和操作稳定的前提下,合理的喷煤比约为180 kg/t。  相似文献   

7.
将炉腹煤气量指数XBG定义为单位炉缸断面积上通过的炉腹煤气量并给出了透气阻力系数K的计算公式,XBG及K可以用作判断炉况的标志,衡量高炉强化冶炼的程度。石横特钢的生产数据分析表明,1#高炉XBG为68 m3/(min·m2)、K为16.2时,高炉炉况最为稳定;3#高炉XBG为70 m3/(min·m2)、K为在16时,炉况顺行最好。可将XBG、K并入高炉曲线,实现在线实时观察,对高炉炉况顺行状态判断实现量化。  相似文献   

8.
用高炉炉腹煤气量指数来衡量高炉强化程度   总被引:7,自引:3,他引:4  
项钟庸 《炼铁》2007,26(2):2-4
采用高炉炉腹煤气量指数来衡量高炉强化程度,更能说明高炉强化的本质,更能说明高炉冶炼过程中,各种因素对高炉强化的影响.因此,应该用炉腹煤气量指数来代替冶炼强度.  相似文献   

9.
那树人 《炼铁》2012,(2):60-62
通过阐明高炉容积利用系数、焦比、冶炼强度和炉腹煤气量指数、炉腹煤气效率的概念和意义,认为高炉冶炼三大技术经济指标提出时间久远,尚有一定功用,可以进一步完善,但不宜轻易废弃。指出"炉腹煤气量指数"的计算需要明晰、规范,而"炉腹煤气效率"的概念及算式是不够正确的。  相似文献   

10.
《炼铁》2015,(1)
重点阐述了高炉炉腹煤气量指数和吨铁炉腹煤气量之间的关系,通过提高炉腹煤气量指数时,进入风口的吨铁耗氧量的变化建立了两者的关系,使用Rist线图解决了提高炉腹煤气量指数导致燃料比上升的关键,提出了用吨铁耗氧量的变化作为控制炉腹煤气量指数的判据。  相似文献   

11.
卫继刚 《钢铁》2012,47(3):15-19
 从太钢5号高炉炉腹煤气量指数54m3/(min·m2)到67m3/(min·m2)的实践出发,探讨其对生产的影响及合理控制该指数的意义,从而为大型高炉实现较高炉腹煤气量指数下的低燃料比、经济化生产服务。  相似文献   

12.
以与炉腹煤气量指数相关联的高炉利用系数为优化目标,建立了包括物质和能量的平衡约束、工艺约束、操作条件约束、其他变量上下限约束共50个线性和非线性约束条件,原燃料参数、工艺参数、生铁质量参数共16个优化变量的高炉性能优化模型。利用序列二次规划算法,得出优化结果。经与实际生产数据比较,验证了模型的正确性。利用该优化模型和算法,分析了高炉炉腹煤气量指数、煤比、铁的直接还原度、鼓风温度、鼓风湿度、鼓风富氧率对高炉利用系数的影响。  相似文献   

13.
 通过攀钢高炉与不同容积高炉的指标对比,提出了衡量高炉冶炼强化程度的指数ξ,包括渣铁量指数和炉腹煤气量指数两个部分,克服了传统冶炼强度和炉腹煤气量指数的局限,更能体现高炉冶炼的本质。通过对不同高炉强化程度指数的分析和对比可知:渣量对攀钢高炉强化程度的影响很大,是攀钢高炉强化程度高的重要原因;提高富氧率可以在不增加风量的情况下提高强化程度;高压操作是在高冶炼强度下缓解下降炉料与上升煤气流之间相对运动矛盾的有效手段,提高炉顶压力是攀钢进一步提高强化程度的重要措施。  相似文献   

14.
欧阳标  项钟庸 《钢铁》2012,47(4):19-22,31
长期以来,确定高炉鼓风机能力的方法不科学,导致与高炉的能力不匹配,并增加高炉投资。通常认为,采用气体动力学非线性规划方法比较科学,但用实际高炉的最大炉腹煤气量对计算结果校正,发现参数取值值得研究。此外,由于计算复杂,难于掌握和推广。因此,根据各级高炉炉腹煤气量指数的大量实际统计数据,提出了1种简单的确定鼓风机能力的新方法。  相似文献   

15.
对新钢11号高炉高富氧操作实践进行总结,分析提高鼓风富氧率后高炉产量、燃料比、料柱透气性指数变化。生产实践证明,高富氧后高炉产量显著提高,在炉腹煤气量指数基本不变的前提下,保证了高炉顺行,燃料比得到一定程度的降低。  相似文献   

16.
 在实验室条件下研究了提高炉腹煤气中氢气含量对含铁炉料软熔性能的影响。研究结果表明:随着氢气含量的提高,含铁炉料的软化开始温度先增加后降低,软化终了温度升高,软化区间先变宽后变窄,熔融开始温度、滴落温度升高,熔融区间变窄,炉料透气性明显改善。增加炉腹煤气中氢气含量有利于高炉冶炼。  相似文献   

17.
唐顺兵 《炼铁》2011,30(3):8-13
通过对太钢5号高炉的生产统计数据的分析,重点探讨了焦炭质量对大型高炉在提高煤比,降低焦比和燃料比,以及炉缸活性等方面的影响,认为焦炭质量对大型高炉在高炉腹煤气量指数生产时对炉况顺行度、透气性、焦比和炉芯温度等影响显著,并提出了大型高炉对焦炭质量指标的量化要求。  相似文献   

18.
项钟庸  银汉 《钢铁》2011,46(9):17-21
 提出高炉操作者、管理者的指导思想必须从以产量为中心的思想模式转变到以降低燃料比为中心的轨道上来,以高炉燃料比为中心。提出使用炉腹煤气量指数、炉缸面积利用系数和炉腹煤气效率的新指标来评价高炉生产效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号