首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The HfFe6Ge6-type YbMn6Ge6−xGax solid solution (0.07≤x≤0.72) has been studied by X-ray diffraction, microprobe analysis and powder magnetization measurements. All the compounds order antiferromagnetically between TN=481 K for x=0.07 and TN=349 K for x=0.72 and display more or less pronounced spontaneous magnetization at lower temperature. The corresponding Curie points increase from 40 K for x=0.07 to 319 K for x=0.72. The maximum magnetization values of the Ga-rich compounds (M≈5 μB/f.u. at 6 K) is compatible with a ferrimagnetic order of the Mn and Yb sublattices whereas the smaller values measured in the Ga-poor compounds suggest the stabilization of non-colinear magnetic structures. All the studied compounds are characterized by rather large coercive fields at low temperature (4.0≤Hc≤8.2 kOe).  相似文献   

2.
The article reports on the effect of addition of Cu into the ZrO2 film on its structure, physical and mechanical properties. The ZrO2 and Zr–Cu–O films were reactively sputtered using a dc unbalanced magnetron from Zr (99.9) and ZrCu (90/10 at.%) targets in Ar + O2 mixture at the substrate temperature Ts = 300, 400 and 550 °C and total sputtering gas pressure pT = 1 Pa on steel, Si(100) and glass substrates. The structure of films was characterized by an X-ray diffraction (XRD) and mechanical properties, i.e. microhardness H, effective Young's modulus E* = E / (1 − ν2) and elastic recovery We, were measured using a microhardness tester; E and ν are the Young's modulus and the Poisson ratio, respectively. The film brittleness was characterized by the formation of cracks during the diamond indenter impression into it. 5 μm thick ZrO2 films prepared in the oxide mode of sputtering are crystalline (m-ZrO2) and exhibit relatively (i) high hardness H≈16 GPa and (ii) low ratio H3 / E*2≈0.11 GPa. The Zr–Cu–O films with low (≤ 2 at.%) Cu content exhibit (i) crystalline structure, (ii) higher H, (iii) lower (− 1.5 GPa) macrostress σ and (iv) higher ratio H3 / E*2≈0.14 GPa. On the contrary, the Zr–Cu–O films with high (24 to 44 at.%) Cu content exhibit (i) X-ray amorphous structure, (ii) lower H≈11 GPa and lower ratio H3 / E*2≈0.075 GPa. A special attention was devoted to the investigation of cracking of Zr–Cu–O films under high (0.5 and 1 N) loads of the diamond indenter. The relations between the film cracking and properties of the film and the substrate were used to assess the toughness of the Zr–Cu–O film. It was found that the film toughness increase with increasing H3 / E*2 ratio. It was shown that the addition of Cu to ZrO2 film can improve its toughness.  相似文献   

3.
Employing a Tian-Calvet-type calorimeter operating in the scanning mode at temperatures from 1120 to 1220 K, the enthalpy change, ΔdH, associated with the decomposition of GaBO3 (=1/2β-Ga2O3+1/2B2O3(liq.)) and the corresponding decomposition temperature, Td, were determined: ΔdH=30.34±0.6 kJ/mol, Td=1190±5 K. Using the transposed-temperature-drop method the thermal enthalpy, H(T)−H(295 K), of GaBO3 was measured as a function of temperature, T, in the region from 760 to 1610 K; the results obtained are
[H(T)−H(295 K)]/(J/mol)=104.8·(T/K)−31 300 (760 K<T<1190 K),
[H(T)−H(295 K)]/(J/mol)=138.8·(T/K)−41 480 (1190 K<T<1590 K).
On the basis of the experimental results, the enthalpy and entropy of formation, ΔfH and ΔfS, respectively, of GaBO3 from the component oxides were derived:
ΔfH=−30.34 kJ/mol,ΔfS=−25.50 J/(K·mol) at 1190 K,
ΔfH=−10.55 kJ/mol,ΔfS=−5.48 J/(K·mol) at 298 K.
The enthalpy versus temperature curve shows, apart from a step associated with the decomposition of GaBO3, a further step at 1593 K which is attributed to a monotectic equilibrium.  相似文献   

4.
The longitudinal and transverse ultrasonic sound velocity and attenuation, as well as electric resistance have been carefully measured in single-phase polycrystalline giant magnetoresistance perovskite La0.67Sr0.3Mn0.87Fe0.13O3 at a frequency of 10 MHz, from 20 to 300 K. A big electric resistance peak was observed at 85 K (TC). At the temperature above TC, the resistivity can be fitted well by Mott’s law ρ=exp (T0/T)1/4 and both the longitudinal and transverse sound velocities show a lattice softening, which was accompanied by an attenuation peak. This simultaneous occurrence of electron and lattice softening implies electron–phonon coupling, known to exist for the octahedrally coordinated d4 ion, originating in the Jahn–Teller distortion. Below 55 K, pronounced sound-velocity softening for both longitudinal and transverse waves was observed; this may correspond to the formation of a spin-glass state.  相似文献   

5.
Polycrystalline samples of potassium doped lanthanum manganites having nanometric crystallite size have been synthesized by pyrophoric method. The Curie temperature (TC) of the prepared samples is found to be strongly dependent on K content and spans between 260 and 309 K. Close to TC, large change in magnetic entropy has been observed in all the samples. The maximum magnetic entropy change observed for samples with different concentration of K, exhibits a linear dependence with the applied magnetic field. Adiabatic temperature change at TC at 1 T also increases with K doping and attains a maximum of 2.1 K for La0.85K0.15MnO3. Estimated relative cooling power of La1−xKxMnO3 compounds is nearly one-third of pure Gd. In addition to the tuneability of TC between 260 and 310 K, higher chemical stability, lower eddy current heating and inexpensive preparation technique; the magnetic entropy change in La0.85K0.15MnO3 compound at 1 T magnetic field is found to be 3.00 J/kg K and is 89% to that known for the prototype magnetic refrigerant (pure Gd). Our result on magnetocaloric properties suggests that La1−xKxMnO3 compounds are attractive as a possible refrigerant for near room temperature magnetic refrigeration.  相似文献   

6.
Investigations of phase relations in the Ba-rich part of the In2O3–BaO(CO2)–CuO pseudo-ternary system at 900 °C have revealed the existence of new indium–copper oxycarbonate – Ba4In0.8Cu1.6(CO3)0.6O6.2. Rietveld refinement of the X-ray powder diffraction data combined with infrared studies gives evidence that this phase is a oxycarbonate crystallising in the tetragonal structure (space group I4/mmm) with unit cell parameters: a=4.0349(1) Å and c=29.8408(15) Å. In the binary part of the In2O3–BaO(CO2) system we have identified the occurrence of Ba4In2−x(CO3)1+xO6−2.5x oxycarbonate solid solution showing a crystal structure also described by I4/mmm space group, but with the unit cell parameters: a=4.1669(1) Å and c=29.3841(11) Å for x=1. The existence range of this phase, −0.153<x<0.4, includes chemical compositions of earlier found phases: Ba5In2+xO8+0.5x with 0≤x≤0.45 (known as the -solid solution), as well as the binary Ba4In2O7 phase. The crystal structures of both new oxycarbonates are isomorphic and related to n=3 member of the Ruddlesden–Popper family.  相似文献   

7.
Single crystals of La11V4+V35+O26 were prepared by high temperature reactions in an N2/H2 mixture above the melting point of the initial oxides V2O5–La2O3. X-ray investigations of the dark blue crystals reveal triclinic symmetry, space group with = 7.088 Å, β = 10.213 Å, χ = 10.250 Å, = 89.59°, β = 71.10°, τ = 70.00°, Z = 1. The lanthanum-rich compound exhibits a new structure type characterized by a complicated La11O2619- network with incorporated V4+/V5+ ions. The VO4 tetrahedra are isolated from each other and occupied with V4+ and V5+ in a statistical manner.

Résumé

Einkristalle von La11V4+V35+O26 wurden durch Hochtemperaturreaktionen unter N2/H2-Mischungen oberhalb des Schmelzpunktes von V2O5-La2O3 dargestellt. Die röntgenographische Untersuchung der tiefblauen Kristalle führte zu trikliner Symmetrie, Raumgruppe mit = 7,088 Å, β = 10,213 Å, χ = 10,250 Å = 89,59°, β = 71,10°, τ=70,00°, Z = 1. Die lanthanreiche Verbindung bildet einen neuen Strukturtyp und zeichnet sich durch ein kompliziertes La11O2619- Gerüst aus, in welches V4+/V5+-Ionen eingelagert sind. Die gebildeten VO4-Tetraeder treten zueinander isoliert auf und sind statistisch mit V4+ und V5+ besetzt.  相似文献   


8.
The new compound Li2VGeO5 with a layered structure has been synthesized at 580 °C via the hydrothermal method. The compound crystallizes in the space group P4/n of the tetragonal system with two formula units in a cell of dimensions a=6.5187(9) Å, c=4.5092(9) Å (T=298 K), V=191.61(5) Å3. The structure is composed of layers made of repeating [(VO5)(GeO4)]1− units. Li+ ions reside between the layers. The magnetic susceptibility data show an antiferromagnetic coupling below 5 K with C=0.47 emu K mol−1, and θ=−13 K with μeff=1.89μB for each Li2VGeO5 unit.  相似文献   

9.
The structural and magnetic properties of perovskite oxides La0.7Ca0.3−xKxMnO3 (0 ≤ x ≤ 0.15) have been investigated to explore the influence of the A-site cation size-disorder (σ2). The materials were prepared by the solid-state method and then characterized by X-ray diffraction (XRD). The XRD data have been analyzed by Rietveld refinement technique. For K doping concentration x ≤ 0.075, the samples crystallize in the orthorhombic structure, while for x ≥ 0.1, the structure becomes rhombohedral. The variation of the magnetization M as a function of the applied magnetic field μ0H reveals the presence of a structural distortion leading to a reduction of the magnetization at low μ0H values. When increasing μ0H, the structural distortion decreases and for a high applied magnetic field, the M (μ0H) curves saturate indicating the disappearance of the structural distortion. The influence of K doping concentration and the applied magnetic field on the magnetocaloric properties has been considered. A large magnetic-entropy change (|ΔSM|  5 J/kg K) is obtained in all samples at Curie temperatures between 270 and 280 K for an applied magnetic field of 3 T. These results show that these materials can be used as candidates for magnetic refrigerants near room temperature.  相似文献   

10.
The effect of substituting Sr for Ba on the magneto-transport and magnetic properties of (La1/3Sm2/3)0.67Ba0.33MnO3 system, has been investigated. The samples, (La1/3Sm2/3)0.67Ba0.33−xSrxMnO3 (x = 0.0, 0.1, 0.2 and 0.33), synthesized by citrate gel route, crystallize in an orthorhombic structure (space group Pnma, no. 62). The unit cell volume decreases while the metal-insulator transition temperature (TMI) increases with increasing Sr content. The localization of charge carriers occurs at low temperatures and becomes more pronounced with decreasing Sr content which leads to an enhancement of resistivity. This could be understood by the variation of MnOMn bond-distance and angle. Reappearance of semiconducting behavior (dρ/dT < 0) is observed only in samples with x = 0 and x = 0.1 below certain temperature (T < TMI). These samples exhibit thermal irreversibility behavior for a field-cooled (FC) and zero-field-cooled (ZFC) magnetization data in a magnetic field of 100 Oe. This is ascribed to the competition between the superexchange and double exchange interactions. The change in physical properties has been correlated to chemical parameters such as ionic radii, tolerance factor, electronegativity and variation in MnOMn angle.  相似文献   

11.
A new ternary compound of composition LaMg2Ni has been found and investigated with respect to structure and hydrogenation properties. It crystallizes with the orthorhombic MgAl2Cu type structure (space group Cmcm, a=4.2266(6), b=10.303(1), c=8.360(1) Å; V=364.0(1) Å3; Z=4) and absorbs hydrogen near ambient conditions (<200 °C, <8 bar) thereby forming the quaternary metal hydride LaMg2NiH7. Neutron powder diffraction on the deuteride revealed a monoclinic distorted metal atom substructure (LaMg2NiD7: space group P21/c, a=13.9789(7), b=4.7026(2), c=16.0251(8) Å; β=125.240(3)°, V=860.39(8) Å3; Z=8) that contains two symmetry independent tetrahedral [NiD4]4− complexes with Ni–D bond lengths in the range 1.49–1.64 Å, and six Danions in tetrahedral metal configuration with bond distances in the ranges 1.82–2.65 Å (Mg) and 2.33–2.59 Å (La). The compound constitutes a link between metallic ‘interstitial’ hydrides and non-metallic ‘complex’ metal hydrides.  相似文献   

12.
The HfFe6Ge6-type RMn6Sn6−xXx′ solid solutions (R=Tb, Dy, X′=Ga, In; x≤1.4) have been studied by powder magnetization measurements. All the series are characterized by ferrimagnetic ordering and by a decrease in Curie temperatures with the substitution (ΔTcx≈−39 K for X′=Ga and ΔTcx≈−75 K for X′=In). The RMn6Sn6−xGax systems are characterized by a strong decrease in the spin reorientation temperature with substitution (ΔTtx≈−191 K and −78 K for R=Tb and Dy, respectively) while this transition almost does not change in systems containing indium. The coercive fields drastically decrease with the substitution in the TbMn6Sn6−xGax system while the substitution of In for Sn has a weaker effect. The coercive fields of the Dy compounds do not vary greatly with the substitution in both series. The behaviour of the TbMn6Sn6−xGax is compared with the evolutions observed in the TmMn6Sn6−xGax series. This comparison strongly suggests that the replacement of Sn by Ga changes the sign of the A02 crystal field parameter.  相似文献   

13.
An experimental investigation of the hydrogen absorption rate in the two-phase (–β) region of La1.5Ni0.5Mg17 powder under the condition of various pressures and temperatures is presented. The results are well interpreted using the Jander diffusion model, [1−(1−ξ)1/3]2=k(T,P)t, which suggests that the rate-controlling step of hydrogen absorption in La1.5Ni0.5Mg17 is three-dimensional diffusion. An apparent activation energy for such diffusion process of 90±1 kJ/mol H2 has been obtained from the absorption data.  相似文献   

14.
An energetically attractive, simple, fast and a novel low temperature (300 °C) solution combustion route for the synthesis of crystalline and homogeneous nanoparticles of lanthanum barium manganese oxide La0.9Ba0.1MnO3+δ (LBMO) is reported. Formation and homogeneity of the solid solutions have been confirmed by powder X-ray diffraction (PXRD) and energy dispersive X-ray analysis (EDS) respectively. The Rietveld analysis shows both as-formed as well as calcined samples are in cubic phase with space group pm3m. The microstructure and agglomerated particle size of the compounds are examined by scanning electron microscope. Infrared spectroscopy revealed that both MnOMn bending mode and MnO stretching mode are influenced by calcination temperature. The magnetoresistance measurement on sintered LBMO pellet exhibits a broad metal–insulator transition (TM-I) at around 228 K. At 1 T applied magnetic field, LBMO shows magnetoresistance (MR) of 10%, whereas for 4 and 7 T, the negative magnetoresistance values are in the range 51 and 59% respectively at TM-I. The experimental resistivity data of the present investigation are fitted to a simple empirical equation in order to understand conduction mechanism in this compound.  相似文献   

15.
The Mg–Al–Zn system of intermetallics contains an exceptional crystalline phase Mg32(Al,Zn)49, named the Bergman phase, whose crystal structure is based on a periodic arrangement of icosahedral Bergman clusters within the giant-unit-cell, so that periodic and quasiperiodic atomic orders compete in determining the physical properties of the material. We have investigated electrical, magnetic, thermal and thermoelectric properties of a monocrystalline Bergman phase sample of composition Mg29.4(Al,Zn)51.6, grown by the Bridgman technique. Electrical resistivity is in the range ρ ≈ 40 μΩ cm and exhibits positive-temperature-coefficient with T2 dependence at low temperatures and T at higher temperatures, resembling non-magnetic amorphous alloys. Magnetic susceptibility χ measurements revealed that the sample is a Pauli paramagnet with a significant Landau diamagnetic orbital contribution. The susceptibility exhibits a weak increase towards higher temperature. Combined analysis of the ρ(T) and χ(T), together with the independent determination of the Pauli susceptibility via the NMR Knight shift suggests that the observed temperature dependence originates from the mean-free-path effect on the orbital susceptibility. The electronic density of states (DOS) at the Fermi energy EF was estimated by NMR and was found to amount 72% of the DOS of the fcc Al metal, with no evidence on the existence of a pseudogap. Thermal conductivity contains electronic, Debye and hopping of localized vibrations terms, whereas thermopower is small and negative. High structural complexity of the Bergman phase does not result in high complexity of its electronic structure.  相似文献   

16.
Crystals of Ba3NaRu2O9−δ (δ≈0.5) and Ba3(Na, R)Ru2O9−δ (R=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb) were grown by an electrochemical method, and their crystallographic, magnetic, and electric properties were studied. All crystals have a hexagonal structure of space group P63mmc. Ba3NaRu2O9−δ and Ba3(Na, R)Ru2O9−δ (except Ce) have a negative asymptotic Curie temperature suggesting the existence of an antiferromagnetic order; however, they are paramagnetic at temperatures above 1.7 K. Ba3NaRu2O9−δ has an effective magnetic moment Peff of 0.91 μB, while Peff of Ba3(Na, R)Ru2O9−δ (except Ce) reflects the large free-ion moment of the rare earth ions. Ba3(Na, Ce)Ru2O9−δ shows peculiar magnetic behavior that differs from the magnetism of other Ba3(Na, R)Ru2O9−δ crystals. The resistivity of all crystals exhibits an activation-type temperature dependence with an activation energy in the range of 0.10.2 eV.  相似文献   

17.
Mg4IrH5 and its deuteride was synthesized by the reaction of magnesium and iridium powders with hydrogen (deuterium) at high pressure (41–100 bar) and high temperature (723–783 K). The structure was determined by X-ray and neutron powder diffraction. This compound crystallizes with a new structure type with orthorhombic symmetry (space group Imma, cell parameters a = 4.8110(3) Å, b = 8.9624(6) Å, c = 10.8970(8) Å, Z = 4, hydride, T = 298 K). It contains two deuterium sites: one is disordered with an occupancy of 75% and surrounds iridium in a distorted square planar configuration with distances [Ir---D] = 1.69 Å; the other is ordered and is coordinated by magnesium in a distorted tetrahedral configuration.  相似文献   

18.
Co/Co3O4 bilayer films were fabricated by RF sputtering with Co and Co3O4 targets. Exchange bias effect in the bilayer films was observed at 80 K by vibrating sample magnetometer. The bias effect disappeared about 240 K slightly lower than the Néel point of CoO and much higher than the Néel temperature of Co3O4 about 40 K. To clarify the origin of the exchange bias effect, Auger and X-ray photoelectron spectroscopy were employed and CoO was found at a transition region from Co3O4 layer to Co layer due to oxygen diffusion during sputtering. The angular dependence of exchange bias field HE was obtained to obey function of HE(θ)=18.06 (kA/m)[−cos θ+0.22 cos 3θ+0.03 cos 5θ−0.01 cos 7θ+].  相似文献   

19.
A new ternary compound Ce(Au,Sb)2, with a homogeneity range has been observed from X-ray powder diffraction of as cast alloys, a = 4.743–4.712 Å, c = 3.567–3.768 Å. Its crystal structure was investigated by X-ray diffraction from Ce(Au1−xSbx)2 (x = 0.266) single crystal: CAD-4 automatic diffractometer, Mo K radiation, a = 4.7256(6) Å, c = 3.6711(6) Å, P6/mmm space group, V = 70.997(17) Å3, Z = 1, ρ = 10.732 Mg/m3, μ = 76.369 mm−1, R1 = 0.0415, wR2 = 0.0793 for 99 reflections with I > 2σ(I0). The coordination polyhedron of X (X = 0.734Au + 0.266Sb) atom is a full-capped trigonal prism [XCe6X3X2]. Ce atom is coordinated by 14 atoms: [CeX12Ce2]. The compound is isotypic with UHg2 structure, a deformation derivative of AlB2 structure type. It forms isostructural compounds with La and Pr.  相似文献   

20.
Light yellow single crystals of potassium nitridoditungstate (K6W2N4O3) and pale single crystals of potassium digermanate (K6Ge2O7) were obtained by the reaction of the metal oxides WO3 (molar ratio, 1 : 15.7) or GeO2 (molar ratio, 1 : 2) in alkali metal amide melts in an autoclave at 530–600 °C for 6–8 days. Colourless single crystals of rubidium digermanate (Rb6Ge2O7) were prepared by the reaction of GeO2 with rubidium amide (molar ratio, 1 : 2) in ammonia at 350 °C in a high-pressure autoclave (H. Jacobs and D. Schmidt, in E. Kaldis (ed.), High-pressure Ammonolysis in Solid State Chemistry, Current Topics in Materials Science, Vol. 8, North Holland, Amsterdam, 1981, p. 379) (p(NH3) = 5.5 kbar) for 10 days. In all three cases other nitrogen-containing products were present.

The structures of the title compounds were determined on the basis of single-crystal data. They are isotypic or structurally closely related to each other: K6W2N4O3: P21/n, a = 6.720(2) Å, b = 9.473(1) Å, c = 9.581(2) Å, β = 91.99(2)°, Z = 2, R/Rw = 0.040/0.048, N(I) > 3σ(I) 2057, N(Var.) = 71. K6Ge2O7: Pn, a = 6.529(2) Å, b = 9.079(4) Å, c = 9.162(6)Å, β = 91.85(4)°, Z = 2, R/Rw = 0.022/0.024, N(I) 3σ(I) = 1486, N(Var.) = 135. Rb6Ge2O7: P21/n, a = 6.839(4) Å, b = 9.437(6) Å, c = 9.460(6) Å, β = 91.53(5)°, Z = 2, R/Rw = 0.061/0.074, N(I) 3σ(I) = 1055, N(Var.) = 71.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号