首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulation Techniques in Electromyography   总被引:4,自引:0,他引:4  
A motor unit action potential (MUAP) recorded in clinical electromyography (EMG) is the spatial and temporal summation of the action potentials (AP's) from all muscle fibers in a motor unit (MU). An important determinant of MUAP waveform characteristics is the size of the recording electrode. In this paper, we have described the use of a modified line source model of single muscle fiber action potentials to simulate MUAP's as recorded by single fiber (SF) EMG, concentric needle (CN) EMG, and macro-EMG electrodes. Results indicate that SFEMG recordings from a normal MU contain mainly the AP's of the closest one to three muscle fibers of the MU. The amplitude, area, and duration of the simulated CNEMG MUAP's are determined mainly by the number and size of muscle fibers within a semicircular territory of 0.5, 1.5, and 2.5 mm, respectively, around the tip of the electrode. The amplitude and area of simulated macro-EMG MUAP's increase with the number of muscle fibers in the MU.  相似文献   

2.
As more and more intramuscular electromyogram (EMG) decomposition programs are being developed, there is a growing need for evaluating and comparing their performances. One way to achieve this goal is to generate synthetic EMG signals having known features. Features of interest are: the number of channels acquired (number of detection surfaces), the number of detected motor unit action potential (MUAP) trains, their time-varying firing rates, the degree of shape similarity among MUAPs belonging to the same motor unit (MU) or to different MUs, the degree of MUAP superposition, the MU activation intervals, the amount and type of additive noise. A model is proposed to generate one or more channels of intramuscular EMG starting from a library of real MUAPs represented in a 16-dimensional space using their Associated Hermite expansion. The MUAP shapes, regularity of repetition rate, degree of superposition, activation intervals, etc. may be time variable and are described quantitatively by a number of parameters which define a stochastic process (the model) with known statistical features. The desired amount of noise may be added to the synthetic signal which may then be processed by the decomposition algorithm under test to evaluate its capability of recovering the signal features.  相似文献   

3.
Determining the conduction velocity of motor unit action potentials is one of the most important problems in surface electromyography. The estimate of one average conduction velocity value depends on a variety of uncontrollable factors. More meaningful information is obtained from the estimation of the distribution of the different delays in the myoelectric signals. A solution to the problem is the separation and characterization of the individual components propagating at different velocities. A technique, based on surface electrode array recording, is proposed to estimate motor unit conduction velocity distribution. The method consists in the identification of the single action potentials in the time scale domain (with the continuous wavelet transform) and in the estimation of their conduction velocities based on the beamforming algorithm. The performances of the technique have been evaluated using simulated and real myoelectric signals. The results demonstrate that the technique is accurate and reliable. The method may be useful for the diagnosis of neuromuscular disorders, for the monitoring of muscle fatigue and for noninvasive investigation of individual motor units.  相似文献   

4.
The leading edge, terminal wave, and slow afterwave of the motor-unit action potential (MUAP) are produced by changes in the strength of electrical sources in the muscle fibers rather than by movement of sources. The latencies and shapes of these features are, therefore, determined primarily by the motor-unit (MU) architecture and the intracellular action potential (IAP), rather than by the volume-conduction characteristics of the limb. We present a simple model to explain these relationships. The MUAP is modeled as the convolution of a source function related to the IAP and a weighting function related to the MU architecture. The IAP waveform is modeled as the sum of a spike and a slow repolarization phase. The MU architecture is modeled by assuming that the individual fibers lie along a single equivalent axis but that their action potentials have dispersed initiation and termination times. The model is illustrated by simulating experimentally recorded MUAPs and compound muscle action potentials.  相似文献   

5.
Modeling of surface myoelectric signals. I. Model implementation   总被引:2,自引:0,他引:2  
The relationships between the parameters of active motor units (MU's) and the features of surface electromyography (EMG) signals have been investigated using a mathematical model that represents the surface EMG as a summation of contributions from the single muscle fibers. Each MU has parallel fibers uniformly scattered within a cylindrical volume of specified radius embedded in an anisotropic medium. Two action potentials, each modeled as a current tripole, are generated at the neuromuscular junction, propagate in opposite directions and extinguish at the fiber-tendon endings. The neuromuscular junctions and fiber-tendon endings are uniformly scattered within regions of specified width. Muscle fiber conduction velocity and average fiber length to the right and left of the center of the innervation zone are also specified. The signal produced by MU's with different geometries and conduction velocities are superimposed. Monopolar, single differential and double differential signals are computed from electrodes placed in equally spaced locations on the surface of the muscle and are displayed as functions of any of the model's parameters. Spectral and amplitude variables and conduction velocity are estimated from the surface signals and displayed as functions of any of the model's parameters. The influence of fiber-end effects, electrode misalignment, tissue anisotropy, MU's location and geometry are discussed. Part II of this paper will focus on the simulation and interpretation of experimental signals.  相似文献   

6.
Action potentials travel along the muscle fibers with a specific conduction velocity that depends on their structural and functional properties. Only the estimation of muscle conduction velocity distribution (MCVD) may be able to depict this propagation heterogeneity. Based on the method proposed by Cummins et al. (Electroenceph Clin Neurophysiol, 46:647-658, 1979) to estimate nerve conduction velocity distribution (NCVD), the present paper proposes a method that modifies the Cummins' approach to make it suitable for MCVD estimation from electrically evoked motor responses. The MCVD estimation algorithm was first assessed by means of simulated signals in order to control all signal features during the optimization process. Simulations showed that estimated distributions were very close to the true ones when taking into account the specificities of the muscle action potential, due to its generation and extinction (MSE divided by 5 on distribution standard deviation). This method was then applied to real signals. Elicited motor responses were recorded on the biceps brachii of healthy subjects either during repeated maximal stimulations at 20 Hz or during increasing intensity stimulations at 1 Hz. MCVD estimates were used to analyze fatigue and motor unit recruitment processes, respectively.  相似文献   

7.
The electromyographic (EMG) signal provides information about the performance of muscles and nerves. At any instant, the shape of the muscle signal, motor unit action potential (MUAP), is constant unless there is movement of the position of the electrode or biochemical changes in the muscle due to changes in contraction level. The rate of neuron pulses, whose exact times of occurrence are random in nature, is related to the time duration and force of a muscle contraction. The EMG signal can be modeled as the output signal of a filtered impulse process where the neuron firing pulses are assumed to be the input of a system whose transfer function is the motor unit action potential. Representing the neuron pulses as a point process with random times of occurrence, the higher order statistics based system reconstruction algorithm can be applied to the EMG signal to characterize the motor unit action potential. In this paper, we report results from applying a cepstrum of bispectrum based system reconstruction algorithm to real wired-EMG (wEMG) and surface-EMG (sEMG) signals to estimate the appearance of MUAPs in the Rectus Femoris and Vastus Lateralis muscles while the muscles are at rest and in six other contraction positions. It is observed that the appearance of MUAPs estimated from any EMG (wEMG or sEMG) signal clearly shows evidence of motor unit recruitment and crosstalk, if any, due to activity in neighboring muscles. It is also found that the shape of MUAPs remains the same on loading.  相似文献   

8.
The following is an investigation of the ability of the autoregressive (AR) model to describe the spectrum of the processes underlying the recorded surface EMG. Surface EMG (SEMG) spectrum is influenced by two major factors; one attributed to the motor units (MU) firing rate and the second, the higher frequency one, to the morphology of the action potentials (AP) traveling along the muscle fiber. In the present paper, SEMG measurements were carried out on the biceps brachii muscle with fixed surface electrodes arrangement and isotonic conditions. Sufficient averaging of 0.5 s segments enabled the identification of the low-frequency peak related to the firing rates of the MU's.  相似文献   

9.
We propose a novel method for estimation of muscle fiber conduction velocity from surface electromyographic (EMG) signals. The method is based on the regression analysis between spatial and temporal frequencies of multiple dips introduced in the EMG power spectrum through the application of a set of spatial filters. This approach leads to a closed analytical expression of conduction velocity as a function of the auto- and cross-spectra of monopolar signals detected along the direction of muscle fibers. The performance of the algorithm was compared with respect to that of the classic single dip approach on simulated and experimental EMG signals. The standard deviation of conduction velocity estimates from simulated single motor unit action potentials was reduced from 1.51 m/s [10 dB signal-to-noise ratio (SNR)] and 1.06 m/s (20 dB SNR) with the single dip approach to 0.51 m/s (10 dB) and 0.23 m/s (20 dB) with the proposed method using 65 dips. When 200 active motor units were simulated in an interference EMG signal, standard deviation of conduction velocity decreased from 0.95 m/s (10 dB SNR) and 0.60 m/s (20 dB SNR) with a single dip to 0.21 m/s (10 dB) and 0.11 m/s (20 dB) with 65 dips. In experimental signals detected from the abductor pollicis brevis muscle, standard deviation of estimation decreased from (mean +/- SD over 5 subjects) 1.25 +/- 0.62 m/s with one dip to 0.10 +/- 0.03 m/s with 100 dips. The proposed method does not imply limitation in resolution of the estimated conduction velocity and does not require any iterative procedure for the estimate since it is based on a closed analytical formulation.  相似文献   

10.
Physiologically based simulation of clinical EMG signals   总被引:1,自引:0,他引:1  
An algorithm that generates electromyographic (EMG) signals consistent with those acquired in a clinical setting is described. Signals are generated using a model constructed to closely resemble the physiology and morphology of skeletal muscle, combined with line source models of commonly used needle electrodes positioned in a way consistent with clinical studies. The validity of the simulation routines is demonstrated by comparing values of statistics calculated from simulated signals with those from clinical EMG studies of normal subjects. The simulated EMG signals may be used to explore the relationships between muscle structure and activation and clinically acquired EMG signals. The effects of motor unit (MU) morphology, activation, and neuromuscular junction activity on acquired signals can be analyzed at the fiber, MU and muscle level. Relationships between quantitative features of EMG signals and muscle structure and activation are discussed.  相似文献   

11.
A coefficient for quantifying the shape irregularities of the motor unit action potential (MUAP) is introduced. This coefficient is defined as the “length” of action potential curve normalized by the signal's amplitude in such a way that it is independent on duration and amplitude. It characterizes only the MUAP shape. The irregularity coefficient may be used to measure the deviations of the potential from the normal MUAP. The properties of this coefficient and its relation to the conventional parameters describing MUAP shape, viz. The number of phases and turns is discussed. The examples of classification of real signals according to this coefficient are presented  相似文献   

12.
Time-scale analysis of motor unit action potentials   总被引:1,自引:0,他引:1  
Quantitative analysis in clinical electromyography (EMG) is very desirable because it allows a more standardized, sensitive and specific evaluation of the neurophysiological findings, especially for the assessment of neuromuscular disorders. Following the recent development of computer-aided EMG equipment, different methodologies in the time domain and frequency domain have been followed for quantitative analysis. In this study, the usefulness of the wavelet transform (WT), that provides a linear time-scale representation is investigated, for describing motor unit action potential (MUAP) morphology. The motivation behind the use of the WT is that it provides localized statistical measures (the scalogram) for nonstationary signal analysis. The following four WT's were investigated in analyzing a total of 800 MUAP's recorded from 12 normal subjects, 15 subjects suffering with motor neuron disease, and 13 from myopathy: Daubechies with four and 20 coefficients, Chui (CH), and Battle-Lemarie (BL). The results are summarized as follows: 1) most of the energy of the MUAP signal is distributed among a small number of well-localized (in time) WT coefficients in the region of the main spike, 2) for MUAP signals, we look to the low-frequency coefficients for capturing the average waveshape of the MUAP signal over long durations, and we look to the high-frequency coefficients for locating MUAP spike changes, 3) the Daubechies 4 wavelet, is effective in tracking the transient components of the MUAP signal, 4) the linear spline CH (semiorthogonal) wavelet provides the best MUAP signal approximation by capturing most of the energy in the lowest resolution approximation coefficients, and 5) neural network DY (DY) of Daubechies 4 and BL WT coefficients was in the region of 66%, whereas DY for the empirically determined time domain feature set was 78%. In conclusion, wavelet analysis provides a new way in describing MUAP morphology in the time-frequency plane. This method allows for the fast extraction of localized frequency components, which when combined with time domain analysis into a modular neural network decision support system enhances further the DY to 82.5% aiding the neurophysiologist in the early and accurate diagnosis of neuromuscular disorders.  相似文献   

13.
Many spatial filters have been proposed for surface electromyographic (EMG) signal detection. Although theoretical and modeling predictions on spatial selectivity are available, there are no extensive experimental validations of these techniques based on single motor unit (MU) activity detection. The aim of this study was to compare spatial selectivity of one- and two-dimensional (1-D and 2-D) spatial filters for EMG signal detection. Intramuscular and surface EMG signals were recorded from the tibialis anterior muscle of ten subjects. The simultaneous use of intramuscular wire and surface recordings (with the spike triggered averaging technique) allowed investigation of the activity of single MUs at the skin surface. The surface EMG signals were recorded with a grid of point electrodes (3 x 3 electrodes) and a ring electrode system at 15 locations over the muscle, with the wires detecting signals from the same intramuscular location. For most subjects, it was possible to classify, from the intramuscular recordings, the activity of the same MUs for all the contractions. The surface EMG signals were averaged with the intramuscularly detected MU action potentials as triggers. In this way, eight spatial filters--longitudinal and transversal, single and double differential (LSD, TSD, LDD, TDD), Laplacian (NDD), inverse binomial filter of the second order (IB2), inverse rectangle filter (IR), and differential ring system (C1)--could be compared on the basis of their spatial selectivity. The distance from the source (transversal with respect to the muscle fiber orientation) after which the surface detected potential did not exceed +/- 5% of the maximal peak-to-peak amplitude (detection distance) was statistically smaller for the 2-D systems and TDD than for the other filters. The MU action potential duration was significantly shorter with LDD and with the 2-D systems than with the other filters. The 2-D filters investigated (including C1) showed very similar performance and were, thus, considered equivalent from the point of view of spatial selectivity.  相似文献   

14.
This paper presents a new algorithm for optimal adaptation of the signal templates of a matched filter bank used in the detection of the motor unit action potential waveforms (abbreviated as MUAP's) in an electromyogram (EMG). It is of interest, for clinical diagnosis and therapy, to detect as many MUAP's as possible in a single measurement, and to determine for each motor unit the repetition. rate of its respective MUAP. For this purpose, we have developed a computer program which, in addition to other subprograms, contains the adaptive filter bank mentioned above. The templates in this fllter bank have to be adapted to nonpredetermined changes in measurement conditions such as the movement of the needle electrode inserted in the muscle. In the present paper, the above templates are estimated by means of a "tumbling algorithm," so called because the successive MUAP's from a given motor unit are used as noisy data vectors in a time-varying Kalman filter-predictor framework, which alternately estinates their evolving shapes and identifies the time-varying parameters of the model generating them. The algorithm has been applied with success to synthetic and real EMG data.  相似文献   

15.
Artificial neural network (ANN) based signal processing methods have been shown to have significant robustness in processing complex, degraded, noisy, and unstable signals. A novel approach to automated electromyogram (EMG) signal decomposition, using an ANN processing architecture, is presented here. Due to the lack of a priori knowledge of motor unit action potential (MUAP) morphology, the EMG decomposition must be performed in an unsupervised manner. An ANN classifier, consisting of a multilayer perceptron neural network and employing a novel unsupervised training strategy, is proposed. The ANN learns repetitive appearances of MUAP waveforms from their suspected occurrences in a filtered EMG signal in an autoassociative learning task. The same training waveforms are fed into the trained ANN and the output of the ANN is fed back to its input, giving rise to a dynamic retrieval net classifier. For each waveform in the data, the network discovers a feature vector associated with that waveform. For each waveform, classification is achieved by comparing its feature vector with those of the other waveforms. Firing information of each MUAP is further used to refine the classification results of the ANN classifier. Then, individual MUAP waveform shapes are derived and their firing tables are created  相似文献   

16.
The authors investigated the time-varying behavior of the autoregressive (AR) parameters in a myoelectric (ME) signal detected during a linear force increasing contraction. The AR parameters of interest mere the reflection coefficients, the AR model spectrum, and the prediction errors. The authors used well-conditioned ME signals for which the complete time record of the motor units firings was available. In addition, the influence of the recruitment of a new motor unit, the conduction velocity of action potentials, and additive broad-band noise were investigated using simulated ME signals. The simulated ME signals were constructed from a selected group of the available motor unit action potential trains. The results revealed that, as the contraction progressed, the AR parameters displayed a time-varying behavior which coincided with the recruitment of newly recruited motor units whose spectrum of the waveform differed from that of the rest of the ME signal. This property of the AR parameters was obscured by the presence of broad-band noise and low-amplitude motor unit action potentials, both of which are more pronounced during low-level force contractions  相似文献   

17.
Experimental electromyogram (EMG) data from the human biceps brachii were simulated using the model described in [10] of this work. A multichannel linear electrode array, spanning the length of the biceps, was used to detect monopolar and bipolar signals, from which double differential signals were computed, during either voluntary or electrically elicited isometric contractions. For relatively low-level voluntary contractions (10%-30% of maximum force) individual firings of three to four-different motor units were identified and their waveforms were closely approximated by the model. Motor unit parameters such as depth, size, fiber orientation and length, location of innervation and tendonous zones, propagation velocity, and source width were estimated using the model. Two applications of the model are described. The first analyzes the effects of electrode rotation with respect to the muscle fiber direction and shows the possibility of conduction velocity (CV) over- and under-estimation. The second focuses on the myoelectric manifestations of fatigue during a sustained electrically elicited contraction and the interrelationship between muscle fiber CV, spectral and amplitude variables, and the length of the depolarization zone. It is concluded that a) surface EMG detection using an electrode array, when combined with a model of signal propagation, provides a useful method for understanding the physiological and anatomical determinants of EMG waveform characteristics and b) the model provides a way for the interpretation of fatigue plots.  相似文献   

18.
Human peripheral nerves are composed of thousands of individual nerve fibers whose signal conduction velocities vary from 0.2 to 100 m/s. Though good correlation exist between fiber velocity and the physiological function subserved by these fibers, considerable variation is found for specific end organs (20 to 40 m/s for a single muscle). Though clinical neurophysiologists have routinely measured the maximum conduction velocity of peripheral motor nerves for 30 years, it has not been possible to determine the velocity distributions. This report details a model and noninvasive methodology for motor axon conduction latency distribution mesurement. This distribution, proportional to velocity dispersion, possesses a low-pass filter characteristic which agrees with theoretical predictions and may be significant in some sensory and motor functions.  相似文献   

19.
The contribution of motor unit action potential trains (MUAPT) of distinct motor units (MU) to the crosscorrelation function between myoelectric signals (MES) recorded at the skin surface is studied. In specific, the significance of the correlation between the firing activity of concurrently active MUs (which results in cross-terms in the overall correlation function) is compared to the representation obtained using the contributions of single MUs at each recording site (auto-terms). A model for the generation of surface MUAPs is combined with the generation of MU firing statistics in order to obtain surface MUAPTs. MU firing statistics are simulated to incorporate MU synchronization levels reported in the literature. Alternatively, experimental firing statistics are fed to the model generating the MUAPTs. The contribution of individual MU pairs to the global myoelectric signal correlation function is assessed. Results indicate that the cross-terms from different MUs decrease steadily contributing very little to the overall correlation for record lengths as short as 30 s. Thus, the error expected when computing the crosscorrelation function between two channels of MES as the superposition of the auto-terms contributed by single MUs (i.e., ignoring the cross-terms from different MUs) is shown to be very small.  相似文献   

20.
Changes in surface electromyographic (EMG) amplitude during sustained, fatiguing contractions are commonly attributed to variations in muscle fiber conduction velocity (MFCV), motor unit firing rates, transmembrane action potentials and the synchronization or recruitment of motor units. However, the relative contribution of each factor remains unclear. Analytical relationships relating changes in MFCV and mean motor unit firing rates to the root mean square (RMS) and average rectified (AR) value of the surface EMG signal are derived. The relationships are then confirmed using model simulation. The simulations and analysis illustrate the different behaviors of the surface EMG RMS and AR value with changing MFCV and firing rate, as the level of motor unit superposition varies. Levels of firing rate modulation and short-term synchronization that, combined with variations in MFCV, could cause changes in EMG amplitude similar to those observed during sustained isometric contraction of the brachioradialis at 80% of maximum voluntary contraction were estimated. While it is not possible to draw conclusions about changes in neural control without further information about the underlying motor unit activation patterns, the examples presented illustrate how a combined analytical and simulation approach may provide insight into the manner in which different factors affect EMG amplitude during sustained isometric contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号