首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和万能试验机,研究了挤压Mg-2.19Y-0.66Ni-0.76Co(摩尔分数,%)合金板材的显微组织和力学性能。结果表明:铸态合金主要由α-Mg基体、晶内14H-LPSO相、分布在晶界的18R-LPSO、Mg Y(Co,Ni)4及少量弥散的富Y相组成。均匀化过程中合金发生由晶界的18R-LPSO相向晶内的14H-LPSO相的相转变。挤压后合金发生动态再结晶,晶粒显著细化,并形成弱的基面织构,第二相碎化并沿挤压方向分布。拉伸测试结果显示,挤压合金表现出优异的强塑性匹配,其室温的屈服强度(σTYS)、极限抗拉强度(σUTS)和断裂伸长率(ε)分别为277.2 MPa、199.3 MPa和32.77%。该合金表现出良好的强度和塑性平衡(采用极限抗拉强度断裂伸长率的乘积值表达塑性:σUTS×ε=9.08 GPa·%),其室温下高的拉伸强度主要是由于晶粒细化和LPSO相强化,而良好的延展性主要归因于晶粒细化和织...  相似文献   

2.
本文将Zn和Y元素以原子比为6:1的形式混合加入到AM50合金中,希望通过这种方式能够在AM50合金中形成Mg3Zn6Y准晶相,从而达到改善AM50合金性能的目的。用电子能谱仪(EDS)、光学显微镜(OM)和电子拉力实验机等研究了原位内生AM50-x(Zn,Y)合金组织与性能。结果表明:Zn、Y元素加入到AM50合金中后,其形成的合金晶粒在体积上缩小,原本合金组织以β-Mg17Al12相存在,在加入Zn、Y元素之后形成β-Mg17(Zn,Al)12固溶体相,由此使得原合金组织的结构发生变化;适当增加加入元素的量,在质量比例为4%时,检测到合金的各项力学性能指标达到最高值,σb、σ0.2、δ最高值分别为206.63 MPa、92.50 MPa、10.04%,相较于原合金,各项指标均得到明显提升。  相似文献   

3.
采用铸造法制备了Mg-9Gd-1.5Zn-xAl(x=0、0.3、0.8和1.3 mass%)合金,通过X射线衍射仪、光学显微镜、扫描电镜等研究了不同Al含量对Mg-9Gd-1.5Zn合金物相和显微组织的影响,并采用电子拉伸试验机测试了室温下4种合金的力学性能。结果表明:铸态Mg-9Gd-1.5Zn合金的组织由α-Mg基体和沿晶界分布的Mg5Gd和(Mg, Zn)3Gd相组成,加入Al元素后,合金组织中Mg5Gd相逐渐减少,并产生了新相Al2Gd、Al11Gd3和LPSO(Mg12Gd(Al, Zn))。Al元素促进了有效异质形颗粒(Al2Gd)的产生,抑制了晶粒长大,合金的组织明显细化,起到了细晶强化的效果。当Al添加量为0.8%时,合金的抗拉强度、屈服强度和伸长率分别为192.2 MPa、154.8 MPa和16.6%,与不含Al的Mg-9Gd-1.5Zn合金相比,分别提升了47.1%、64.8%和121.3...  相似文献   

4.
通过在Mg-10Gd-2Y-0.5Zr合金中添加Zn,采用SEM、XRD及万能拉伸试验机,研究了Zn添加对其铸态组织和力学性能的影响。结果表明,Mg-10Gd-2Y-0.5Zr合金的铸态组织主要由α-Mg、Mg5(Gd,Y)和Mg24(Y,Gd)5相组成,而添加质量分数为0.5%~1.5%的Zn后,合金的铸态组织主要由α-Mg、Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5及Mg12(Gd,Y)Zn相组成。添加0.5%的Zn后,合金的室温力学性能明显提高,当Zn含量高于1.0%后,镁合金的室温力学性能开始逐步降低。当Zn含量为0.5%时,合金具有较佳的综合力学性能,其抗拉强度、屈服强度和伸长率分别为197 MPa、160 MPa和4.37%。Zn对Mg-10Gd-2Y-0.5Zr合金铸态力学性能的影响与其铸态组织中Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12(Gd,Y)Zn第二相及其数量有关。  相似文献   

5.
利用球磨与粉末冶金工艺相结合制备AZ61超细晶镁合金,分析了球磨对其晶粒尺寸、析出相、织构及室温拉伸性能的影响。结果表明,球磨及粉末冶金制备的AZ61镁合金与未经球磨处理制备的镁合金相比,其晶粒尺寸由0.91μm细化到0.68μm,且球磨处理促进了Mg17Al12的动态析出及细化,同时弱化了基面织构,其屈服强度、抗拉强度和伸长率分别为393.1 MPa、431.9 MPa和8.5%,综合力学性能优于其他工艺制备的AZ61镁合金。强化机制分析表明,细晶强化的贡献达到90%以上,沿晶界分布的Mg17Al12会降低Orowan强化效果,基面织构的弱化会降低屈服强度。未经球磨处理的镁合金的断裂机制是由镁粉表面的氧化引发粉体脱黏主导的;经球磨处理后其断裂机理为脱黏的粉体与周围未脱黏的组织变形不匹配及晶界上Mg17Al12数量增加导致的。  相似文献   

6.
通过改变挤压温度以获得含有不同堆垛结构长周期相(LPSO)的Mg-2.0Zn-0.3Zr-5.8Y合金,研究LPSO相堆垛结构转变对挤压态合金组织性能的影响规律及其作用机制。结果表明:挤压温度为390℃,合金中有18R和14H 2种堆垛结构的LPSO相,其平均晶粒尺寸为(9.5±3.0)μm,合金的抗拉强度达到280 MPa,延伸率为18.7%;当变形温度达到420℃,合金中18R LPSO相全部转变为14H结构,平均晶粒尺寸大幅细化至(3.1±1.1)μm,合金的抗拉强度和延伸率均得到明显提高,分别达到330 MPa和20.8%;随着挤压温度的进一步提高,合金的平均晶粒尺寸逐渐变大,强度和延伸率开始逐渐降低。由于LPSO相堆垛结构转变和晶粒尺寸变化引起基面织构和柱面织构的强度发生变化,LPSO相形态改变以及晶粒细化是Mg-2.0Zn-0.3Zr-5.8Y挤压态合金室温力学性能变化的主要因素。  相似文献   

7.
采用光学显微镜、X射线衍射仪、X射线荧光法、电子探针显微分析仪、扫描电子显微镜、电子背散射衍射、透射电子显微镜和单轴拉伸测试等对Mg-2Zn-1Mn-x Y (x=0,1,3,5,7,质量分数,%)合金的显微组织和力学性能进行研究。结果表明:随着Y元素的加入,铸态合金的第二相由Mg7Zn3转变为Mg3Zn3Y2,最终转变为Mg12ZnY。Y元素的加入阻碍了动态再结晶的生长过程,使晶粒得到细化,但是进一步增加Y含量不会继续增强晶粒细化程度。挤压态Mg-2Zn-1Mn合金加入Y元素后,塑性呈现出先升高后下降的趋势,这可能是受到了织构取向变化和晶粒粗化的共同影响。此外,合金强度提高主要是由于细晶强化和第二相强化作用。Mg-2Zn-1Mn-7Y合金具有最佳的力学性能,其抗拉伸强度为357 MPa,屈服强度为262 MPa,延伸率为14%。  相似文献   

8.
研究了均匀化态与挤压态Mg-5Zn-2Al-2Sn(ZAT522)合金的微观结构、织构和力学性能。结果表明:挤压合金为完全动态再结晶结构,具有双峰晶粒尺寸。挤压合金的平均晶粒尺寸为11.2μm,在晶界与晶粒内部析出了大量细小Mg2Sn相,析出相的不均匀分布是导致双峰晶粒结构的主要原因;挤压合金中形成强的基面织构。此外,与均匀化合金相比,挤压的ZAT522合金具有优异的力学性能,其抗拉强度255 MPa、屈服强度114 MPa、伸长率32%。挤压合金强度显著增加主要归因于晶粒细化、沉淀强化和织构强化。  相似文献   

9.
研究挤压态和时效态Mg-6Al-3Sn-2Zn(ATZ632)合金的显微组织和力学性能。挤压态ATZ632合金表现出优异的力学性能,其屈服强度(YS)、极限抗拉强度(UTS)和伸长率(EL)分别为216.4 MPa、344.3 MPa和18.4%。经时效处理后,Mg17Al12析出相体积分数增加且出现Mg4Zn7相,Mg17Al12相平行于基面,Mg4Zn7垂直于α-Mg的(0001)面析出,从而使时效态ATZ632合金的YS和UTS分别增加到252.5和416.2 MPa;但EL下降至10.1%。经过150℃较低温度时效处理后,合金中出现静态再结晶晶粒,且静态再结晶晶粒的c轴垂直于挤压方向,其取向呈高度一致性。  相似文献   

10.
通过Al-Si中间合金取代Al添加,并经热挤压成形,在AZ31镁合金中引入Mg2Si强化相。采用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射分析(XRD)、电子万能试验机等研究了Mg2Si强化相对AZ31镁合金挤压组织与力学性能的影响。结果表明,添加Al-Si中间合金后的Mg-3(Al-Si)-Zn挤压组织呈现明显的双峰分布特征,Mg2Si颗粒相可通过粒子激发形核(PSN)作用促进动态再结晶,在碎化的Mg2Si颗粒相周围,合金组织显著细化,形成明显异于其他正常尺寸晶粒的细晶区。引入Mg2Si强化相后,Mg-3(Al-Si)-Zn挤压态合金的屈服强度和抗拉强度都得到提高,分别达到175和269 MPa,同时伸长率略有降低。  相似文献   

11.
本文通过 XRD、OM、SEM、TEM 和万能拉伸试验机系统地研究了铸态与挤压态 Mg100-3xY2xZnx(x=0.5,1,2;at%)合金的显微组织与力学性能。结果发现,铸态与挤压态合金均由 α-Mg 基体和 LPSO 相组成,且同时增加 Y 和 Zn 元素不仅可以促进铸态合金中 18R-LPSO 相的形成,还能够有效促进挤压态合金中 14H-LPSO相的动态析出。其次,挤压态 Mg100-3xY2xZnx合金基体均由再结晶与未再结晶双峰组织组成,且 18R 与 14H-LPSO相沿挤压方向呈现条带状分布。与此同时,18R-LPSO 相体积分数的增加严重阻碍了动态再结晶的形成与长大。此外,随着 Y 和 Zn 元素的同时增加,铸态与挤压态合金的强度不断降低而塑性逐渐增加,最后使得挤压态 Mg98.5Y1Zn0.5合金表现出较高的塑性(伸长率达 35.1 %),而 Mg94  相似文献   

12.
通过对Mg-6Gd-5Y-1Zn(质量分数,%)合金在固溶和时效处理状态下显微组织和力学性能的研究发现,α-Mg基体、沿挤压方向分布的条状18R-LPSO相、少量的Mg24(GdYZn)5 相以及细层片状的14H-LPSO相构成了挤压态合金的组成相。挤压态合金经固溶(T4)处理后,一部分18R-LPSO相溶入基体,并且基体中的14H-LPSO相伸长同时粗化。挤压态合金经过固溶加时效(T6)处理后,大量β′相从α-Mg基体中析出。T6态合金的室温力学性能最好,其屈服强度、抗拉强度及伸长率分别为272 MPa、406 MPa和6.1%。β′相沉淀也发生在挤压态合金的直接人工时效(T5)处理过程,但相比于T6处理,14H-LPSO相和β′相在基体中的体积分数均偏低。  相似文献   

13.
GWN751K镁合金组织和性能研究   总被引:3,自引:0,他引:3  
采用OM,SEM,TEM,XRD等手段,研究了不同状态的GWN751K镁合金的组织和性能。结果表明:铸态合金主要由基体和网状共晶组织构成,σb=215MPa,σ0.2=187MPa,δ=3.5%,DSC曲线存在明显的低熔点吸热峰;经过535℃,16h热处理,共晶组织分解,晶界残留富Mg-Y相,晶粒尺寸明显长大,合金的力学性能有所改善,σb=240MPa,σ0.2=189MPa,δ=10%,DSC曲线低熔点吸热峰消失;合金经过挤压后,发生动态再结晶,力学性能显著提高,σb=320MPa,σ0.2=260MPa,δ=18%,最主要的原因是挤压后合金中存在高密度位错以及细小的晶粒,可显著提高合金的强度和塑性;经过时效后,合金的平均断裂强度达到400MPa以上,但塑性明显降低。铸态合金二次裂纹主要存在于晶界的共晶组织中,535℃,16h热处理以及挤压后的合金二次裂纹主要是在晶粒内部。  相似文献   

14.
研究了不同温度退火对80%冷轧Al0.2CoCrFe2Ni高熵合金显微组织和力学性能的影响。使用X射线衍射仪(XRD) 、电子背散射衍射仪(EBSD)、微控电子万能试验机分别对合金进行了晶体结构、织构类型和力学性能的表征。结果表明,合金在铸态、轧制态以及退火态都表现为稳定FCC晶体结构。合金铸态下呈现典型的树枝晶组织,经80% 轧制后出现了明显的轧制变形带,在随后的退火过程中发生再结晶,其再结晶晶粒体积分数及其晶粒尺寸随着退火温度的升高而增加。合金经过80%轧制后主要表现为(111)<112>织构,其织构强度随着退火温度的升高而降低。80%轧制使Al0.2CoCrFe2Ni合金获得较大的抗拉强度(1005 MPa)和较低的塑性(10%), 随着退火温度的提高,合金的强度降低塑性增强,并在700 ℃退火时合金获得最佳的综合力学性能,该过程主要取决于合金中的位错密度、再结晶体积分数和晶粒尺寸及其再结晶织构的演变。  相似文献   

15.
通过挤压+等通道转角挤压(ECAP)复合加工工艺制备了超细晶Mg-2.5Zn-1Ca合金,采用OM、SEM、XRD、EBSD等手段分析变形过程中微观结构演变特征,结合力学性能变化,研究变形过程中合金强化机制。结果表明,经挤压+ECAP变形后,晶粒与第二相颗粒明显细化,其中挤压+2道次ECAP后获得了均匀的细晶组织,平均晶粒尺寸约1.1μm;同时,细小的Ca2Mg6Zn3颗粒弥散分布于基体中。晶粒细化是剧烈塑性变形、动态再结晶和细小弥散的Ca2Mg6Zn3相共同作用的结果。ECAP变形使合金的力学性能显著提高,2道次有最高的抗拉强度和延伸率,分别为275 MPa和17%。随着ECAP变形道次的增加,织构强度逐渐减弱,基面织构逐渐转变为一种新的织构,并且ECAP变形合金有较高的非基面施密特因子,组织均匀细化,使得材料有更好的延伸率。  相似文献   

16.
特定Zn、Y含量的Mg-Zn-Y合金能原位形成二十面体准晶增强I相(I-Mg3Zn6Y),但常规铸造凝固条件下形成的准晶组织粗大,难以发挥其性能优势。研究了重力铸造、挤压铸造及流变挤压铸造工艺制备的Mg-12Zn-1Y合金的组织和力学性能。结果表明,在重力铸造的合金组织中,大量粗大的I相和Mg7Zn3相聚集在一起。挤压铸造使I相转变为细小的层片状,且Mg7Zn3含量降低。对于流变挤压铸造的合金,随着制浆过程中超声功率增大,α-Mg晶粒得到较大程度的细化和球化,共晶组织间距明显减小,而随着超声功率持续增加到2 400 W时,共晶组织出现一定程度富集。当超声功率为1 600 W时,合金的力学性能最优,屈服强度、抗拉强度和伸长率分别为185 MPa、276 MPa和6.8%,相较于挤压铸造分别提高了35.0%、24.9%和142.9%。  相似文献   

17.
采用光学显微镜、扫描电镜、能谱分析、X射线衍射和拉伸试验等方法,研究了Mg-1Gd-0.6Zr和Mg-1Nd-0.6Zr镁合金在铸态、挤压态和时效态的室温组织和力学性能。结果表明,Mg-1Gd-0.6Zr和Mg-1Nd-0.6Zr合金平均晶粒尺寸小于Mg-0.6Zr合金的晶粒尺寸,由300μm分别细化为100μm和80μm左右,晶界上分别有少量的颗粒状Mg5Gd相和不规则形状的Mg41Nd5、Mg12Nd相。挤压态Mg-1Gd-0.6Zr和Mg-1Nd-0.6Zr合金出现了变形晶粒和动态再结晶晶粒构成的双峰组织,时效后双峰组织更加明显。时效态Mg-1Nd-0.6Zr合金的力学性能最好,抗拉强度为201.71 Mpa,比挤压态高3.6%,比铸态高23%,比时效态Mg-1Gd-0.6Zr合金高2%。时效态Mg-1Nd-0.6Zr合金的伸长率为29.2%,比挤压态高4.3%,比铸态高46%,比时效态Mg-1Gd-0.6Zr合金高15.4%。  相似文献   

18.
研究"轧制+固溶+轧制"工艺和"固溶+轧制"工艺对Mg-Gd-Y-Zn-Mn合金中LPSO相及其组织性能的影响。结果表明:经"轧制+固溶+轧制"工艺处理后,合金中块状LPSO相较小,且分布弥散,合金的组织由细小的再结晶晶粒组成,最终合金获得较好的综合力学性能,抗拉强度(UTS)达到347 MPa,伸长率(EL)为11.6%;经"固溶+轧制"工艺处理后,合金中块状LPSO相较粗大,分布不均匀,由于固溶退火后析出的层状LPSO相阻碍合金的再结晶,轧制后合金中仍存在变形组织,最终合金具有相对较高的抗拉强度(UTS为358 MPa),但是伸长率较低(EL为6.6%);对比而言,"轧制+固溶+轧制"工艺易进行更大压下量轧制,进而获得更高综合力学性能。  相似文献   

19.
通过大挤压比热挤压工艺制备出含有长周期堆垛有序(LPSO)相的高强塑性Mg-8.34Gd-2.32Y-1.04Zn-0.07Zr合金。通过金相显微镜、EBSD、TEM等显微检测方法及数学模型研究了合金显微组织与力学性能之间的关系。结果表明,合金经热挤压后形成了双峰结构,在时效处理后同时存在14H-LPSO相和β′析出相。合金获得了较好的力学性能,抗拉强度、屈服强度和伸长率分别达到463.1 MPa,392.6 MPa和13.3%。合金屈服强度以细晶强化、析出强化和固溶强化的贡献为主。高占比的细小再结晶晶粒、弱织构以及LPSO相的存在对合金塑性的提升有重要作用。  相似文献   

20.
利用OM,SEM,TEM,EBSD,XRD和电子材料试验机研究了Zn含量(1%-4%,质量分数)对反挤压Mg-8Sn-Zn合金组织、织构演化和力学性能的影响.结果表明,所有合金均可在相对较低的挤压温度(250℃)和较高的挤压速度(2 m/min)下成形.在反挤压过程中,所有在均质化处理后残留的粗大第二相在挤压过程中破碎并沿着挤压方向被拉伸成条带状;所有的粗大晶粒均转变为细小的等轴晶,其平均晶粒尺寸分别为7.4,8.3和10.5μm.随着Zn含量的增加,在挤压态合金晶内和晶间分布的细小弥散第二相的体积分数增加,这些第二相主要由亚微米级的Mg2Sn相和纳米级的富Zn相组成.弥散分布在晶界上的第二相有效地钉扎了晶界,从而细化了晶粒尺寸.另外随着Zn含量的增加,合金的织构强度降低,这和变形晶粒的体积分数减小有关.组织细化、织构弱化和第二相弥散化是Mg-Sn-Zn合金强度提高和拉伸/压缩屈服点各向异性减弱的主要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号