首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang T  Chen W  Ma J  Qiang Z 《Water research》2008,42(14):3651-3658
This work investigated the effect of several metal oxides including alpha-FeOOH, alpha-Fe(2)O(3), gamma-FeOOH, and CeO(2) on bromate formation potential (BFP) during ozonation of bromide-containing water. Results indicate that CeO(2) could most effectively minimize the BFP among these metal oxides taking ozonation alone as control. The BFP minimization by O(3)/CeO(2) favored a relatively low Br(-) concentration (i.e., <1.0mgL(-1)) and pH<7. Water temperature ranging from 5 to 25 degrees C had no significant impact on the percent reduction of BrO(3)(-). Further investigation indicates that the effective BFP minimization can be ascribed to neither the surface adsorption of BrO(3)(-) or Br(-) on CeO(2) nor the surface reduction of BrO(3)(-) to HOBr/OBr(-) by CeO(2). It seems to have relationship with the activity of surface Ce(IV) sites. The CeO(2) can lower the concentration of H(2)O(2) which is formed during ozone decomposition and promotes BrO(3)(-) formation. Another possible reason for the BFP minimization is that the CeO(2) could possibly reduce BrO() to HOBr/OBr(-) during the decomposition of H(2)O(2).  相似文献   

2.
The main objective of this paper is to try to develop statistically and chemically rational models for bromate formation by ozonation of clarified surface waters. The results presented here show that bromate formation by ozonation of natural waters in drinking water treatment is directly proportional to the "Ct" value ("Ctau" in this study). Moreover, this proportionality strongly depends on many parameters: increasing of pH, temperature and bromide level leading to an increase of bromate formation; ammonia and dissolved organic carbon concentrations causing a reverse effect. Taking into account limitation of theoretical modeling, we proposed to predict bromate formation by stochastic simulations (multi-linear regression and artificial neural networks methods) from 40 experiments (BrO(3)(-) vs. "Ctau") carried out with three sand filtered waters sampled on three different waterworks. With seven selected variables we used a simple architecture of neural networks, optimized by "neural connection" of SPSS Inc./Recognition Inc. The bromate modeling by artificial neural networks gives better result than multi-linear regression. The artificial neural networks model allowed us classifying variables by decreasing order of influence (for the studied cases in our variables scale): "Ctau", [N-NH(4)(+)], [Br(-)], pH, temperature, DOC, alkalinity.  相似文献   

3.
Inactivation of B. subtilis spores with ozone was investigated to assess the effect of pH and temperature, to compare the kinetics to those for the inactivation of C. parvum oocysts, to investigate bromate formation under 2-log inactivation conditions, and to assess the need for bromate control strategies. The rate of B. subtilis inactivation with ozone was independent of pH, decreased with temperature (activation energy of 42,100 Jmol(-1)), and was consistent with the CT concept. B. subtilis was found to be a good indicator for C. parvum at 20-30 degrees C, but at lower temperatures B. subtilis was inactivated more readily than C. parvum. Bromate formation increased as both pH and temperature increased. For water with an initial bromide concentration of 33 microgl(-1), achieving 2-logs of inactivation, without exceeding the 100 microg l(-1) bromate standard, was most difficult at 30 degrees C for B. subtilis and at midrange temperatures (10-20 degrees C) for C. partum. pH depression and ammonia addition were found to reduce bromate formation without affecting B. subtilis inactivation, and may be necessary for waters containing more than 50 microgl(-1) bromide.  相似文献   

4.
Ammonia can inhibit the formation of bromate in ozonated drinking water by reacting with free bromine (HOBr/OBr-), an intermediate in bromate formation, to form bromamines. Bromamines do not participate in bromate formation, however, they will decay due to autonomous decomposition and through reaction with ozone and hydroxyl radicals. The reaction with ozone controls the overall decay rate. This reaction also results in a net loss of ammonia from the system, leading to the possibility that all ammonia may be oxidized before the ozone residual in the water is eliminated, allowing bromate formation to resume. This paper presents a review of our understanding of bromamine chemistry and identifies areas that are not adequately understood, which may prevent an accurate estimation of ammonia's impact on bromate formation.  相似文献   

5.
Ozonation of aqueous solutions of dimethylamine (DMA) leads to the formation of nitrosodimethylamine (NDMA). The yield of reaction is low (below 0.4% in relation to DMA) and increases with increasing pH. Contact time, ozone/DMA ratio and radical scavengers are other variables controlling the yield of reaction. Data from the literature and observed ozonation by-products suggest that nitrosation of DMA might be responsible for nitrosamine generation. NDMA can be recognized as a by-product of ozonation of DMA in water, which is formed in a specific, but reasonable, range of ozone/DMA ratios. The reaction may have potential importance for water treatment technology assuming reasonable micrograms per liter of DMA concentrations in raw waters.  相似文献   

6.
This paper presents an application of our newly developed adsorptive ozonation process using a high silica zeolite adsorbent (USY) for drinking water treatment. First, the adsorption of 2-methylisoborneol (2-MIB) on USY in a river water/pure water mixture was clarified by a batch-type adsorption experiment. The results showed that 2-MIB was adsorbed on USY; however, almost all of the adsorbed 2-MIB was desorbed over time. The desorption rate was increased with the ratio of river water to pure water, indicating that compounds dissolved in the river water, such as natural organic matter (NOM), prevent the adsorption of 2-MIB on USY. Second, the ability of the river water to consume ozone was confirmed in an experiment using a USY-packed column reactor. The ozone consumption was obviously increased by the presence of USY, indicating that USY-adsorbing compounds dissolved in the river water (probably small size NOM) consumed the ozone. However, the rapid ozone consumption was occurred by 6-8 s in the retention times when 3.14-4.38 mgL(-1) of water dissolved ozone was fed, this rapid ozone consumption lasted no more than these times. This result revealed that the rapid consumption of ozone by the adsorptive compounds in our process could be avoided within a certain retention time (6-8 s; especially for the river water used in this study) when enough concentration of ozone (3.14 mgL(-1) or more; same above) was supplied. We therefore performed a trial in which 2-MIB dissolved in river water was continuously decomposed using a USY-packed column with various ozone concentrations. In the process, the adsorptive compound dissolved in the river water adsorbed and reacted with ozone in the parts of the apparatus upstream of the column, while the adsorption and decomposition of 2-MIB took place in the parts of the apparatus downstream of the column. This resulted in a sufficient 2-MIB decomposition with minimizing bromate ion formation.  相似文献   

7.
Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate >> sulfate > bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO.  相似文献   

8.
The photometric method of determining trace amounts of bromates in drinking water has been developed. The method has been based on measuring diffusion reflection of tinted concentrated of the ionic associate of basic fuchsine with anionic surfactant; detection limit—0.5 μg/dm3. The analysis is not hampered by components usually interfering in determination of bromates by other methods such as chloride, chlorate, iodate, chloramines, etc. The proposed method makes it possible to control the content of bromates in water at the level and below the maximum accessible concentration.  相似文献   

9.
Galapate RP  Baes AU  Okada M 《Water research》2001,35(9):2201-2206
Transformation of dissolved organic matter (DOM) during ozonation results in a higher reduction in trihalomethane formation potential (THMFP) relative to dissolved organic carbon (DOC). This study was conducted to determine the effect of DOM transformation after ozonation on THM formation and to elucidate the difference in THMFP and DOC removal. Changes in DOC, THMFP, reactivities of the hydrophilic and hydrophobic DOC, and phenolic-OH were determined to explain the difference in THMFP and DOC removal after ozonation. Higher reduction in THMFP (24-46%) relative to DOC (10-16%) was obtained and was attributed to the following: transformation of DOM from a more reactive hydrophobic DOC (microg THM produced per mg organic carbon) to a less reactive hydrophilic DOC and to the decrease in the reactivities of both the hydrophobic and hydrophilic DOC after ozonation. The results also showed decrease in phenolic-OH indicating the oxidation of some reactive sites like resorcinol or meta-dihydroxy benzene ring structures, which are prone to chlorine substitution, consequently decreasing the reactivity of the organic carbon to form THM. These changes in DOM led to a significant decrease in THMFP with no remarkable removal in DOC.  相似文献   

10.
The effects of temperature and addition of OH radical scavengers/enhancers or HOBr scavenger on the formation of bromoorganic disinfection byproducts (DBPs) from ozonation of six raw waters were studied in true batch reactors. The formation of bromoorganic DBPs during ozonation generally increased with the increase of temperature, but might also decrease for the waters with somewhat higher values of specific UV absorbance (SUVA). The addition of hydrogen peroxide, ethanol, or ammonium dramatically decreased the formation of bromoorganic DBPs; t-butanol addition significantly increased the formation of bromoorganic DBPs; bicarbonate addition might increase or decrease bromoorganic DBP formation depending on the water source. For all the waters treated with the chemical addition, the level of total organic bromine (TOBr) varied with the same pace as that of ozone exposure (CT), which suggests that TOBr formed during ozonation may be used to estimate the CT, a measure for the achieved degree of disinfection. The results demonstrate that for each water, the correlation between TOBr and CT was less affected by the change of chemical composition of the water than that between BrO(3)(-) and CT; for a given chemical composition and temperature of a water, there generally were well-defined relationships between TOBr and CT, and bromoform and CT just as that between BrO(3)(-) and CT. The possible mechanisms behind the linear functions of TOBr or BrO(3)(-) versus CT were given. Further study is needed to examine whether the trends found in this research can be applicable for the high SUVA waters.  相似文献   

11.
Benitez FJ  Real FJ  Acero JL  Garcia C 《Water research》2007,41(18):4073-4084
Oxidation of four phenyl-urea herbicides (isoproturon, chlortoluron, diuron, and linuron) was studied by ozone at pH=2, and by a combination of O3/H2O2 at pH=9. These experiments allowed the determination of the rate constants for their reactions with ozone and OH radicals. For reactions with ozone, the following rate constants were obtained: 1.9 +/- 0.2, 16.5 +/- 0.6, 393.5 +/- 8.4, and 2191 +/- 259 M(-1) s(-1) for linuron, diuron, chlortoluron, and isoproturon, respectively. The rate constants for the reaction with OH radicals were (7.9 +/- 0.1) x 10(9) M(-1) s(-1) for isoproturon, (6.9 +/- 0.2) x 10(9) M(-1) s(-1) for chlortoluron, (6.6 +/- 0.1) x 10(5) M(-1) s(-1) for diuron, and (5.9 +/- 0.1) x 10(9) M(-1) s(-1) for linuron. Furthermore, the simultaneous ozonation of these selected herbicides in some natural water systems (a commercial mineral water, a groundwater, and surface water from a reservoir) was studied. The influence of operating conditions (initial ozone dose, nature of herbicides, and type of water systems) on herbicide removal efficiency was established, and the parameter Rct (proposed by Elovitz, M.S., von Gunten, U., 1999. Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone Sci. Eng. 21, 239-260) was evaluated from simultaneous measurement of ozone and OH radicals. A kinetic model was proposed for the prediction of the elimination rate of herbicides in these natural waters, and application of this model revealed that experimental results and predicted values agreed fairly well. Finally, the partial contributions of direct ozone and radical pathways were evaluated, and the results showed that reaction with OH radicals was the major pathway for the oxidative transformation of diuron and linuron, even when conventional ozonation was applied, while for chlortoluron and isoproturon, direct ozonation was the major pathway.  相似文献   

12.
Johnson CJ  Singer PC 《Water research》2004,38(17):3738-3750
The objective of this research was to examine the impact of a magnetic ion exchange resin (MIEX) on ozone demand and bromate formation in two different ozonated waters at bench scale. The first raw water had a high bromide ion concentration, a high ozone demand, and was highly colored. Based on experimental findings from the first water, the second water was selected as a model water in which more controlled experiments were performed. The waters were treated with the MIEX resin using jar test procedures to find the optimal MIEX dosage based upon the removal of ultraviolet (UV)-absorbing substances, dissolved organic carbon (DOC), and bromide. The optimal resin dosage was chosen for bulk MIEX treatment and subsequent ozonation in a semi-batch reactor. The ozone demand and formation of bromate were analyzed as a function of ozone dosage and dissolved ozone concentration for the MIEX pre-treated water, and compared to the results obtained by ozonating the water without MIEX pre-treatment. The results indicate that pre-treatment of the water with the MIEX resin significantly reduces total organic carbon, DOC, UV absorbance, color, and to some extent, bromide. MIEX pre-treatment of the water prior to ozonation substantially lowered the ozone demand and formation of bromate during subsequent ozonation.  相似文献   

13.
The chemical oxidation of the organophosphorus insecticide chlorfenvinphos, a priority pollutant in aquatic environments, has been conducted in ultrapure water, by means of single degradation agents (ozone and UV radiation), and by the Advanced Oxidation Processes constituted by combinations of these oxidants (O(3)/H(2)O(2) and UV/H(2)O(2)). The influence of the operating variables was discussed, and the degradation rates were evaluated by determining the rate constants for the reactions with ozone ( [Formula: see text] =3.7+/-0.2 L mol(-1)s(-1)) and OH radicals (k(OH)=(3.2+/-0.2)x10(9) L mol(-1)s(-1)), as well as the quantum yield for the photodegradation (around 0.1 mol E(-1), depending on the pH). Additionally, the ozonation of chlorfenvinphos in a natural water system (a surface water from a reservoir) was studied. The influence of the operating conditions on the insecticide removal efficiency was established, and the R(ct) parameter was evaluated. A kinetic model was proposed for the prediction of the elimination rate of chlorfenvinphos in the ozonation process and the results obtained reveal a good agreement between experimental results and predicted values.  相似文献   

14.
The occurrence and the fate of trihalomethanes (THMs) in the water supply system of Hanoi City, Vietnam was investigated from 1998 to 2001. The chlorination efficiency, THM speciation, and, THM formation potential (THMFP) was determined in the water works and in tap water. With regard to THM formation, three types of groundwater resources were identified: (I) high bromide, (II) low bromide, and (III) high bromide combined with high ammonia and high dissolved organic carbon (DOC) concentrations. Under typical treatment conditions (total chlorine residual 0.5-0.8 mg/L), the total THM formation was always below WHO, EU, and USEPA drinking water standards and decreased in the order type I > type II > type III, although the THMFP was > 400 micrograms/L for type III water. The speciation showed > 80% of bromo-THMs in type I water due to the noticeable high bromide level (< or = 140 micrograms/L). In type II water, the bromo-THMs still accounted for some 40% although the bromide concentration is significantly lower (< or = 30 micrograms/L). In contrast, only traces of bromo-THMs were formed (approximately 5%) in type III water, despite bromide levels were high (< or = 240 micrograms/L). This observation could be explained by competition kinetics of chlorine reacting with ammonia and bromide. Based on chlorine exposure (CT) estimations, it was concluded that the current chlorination practice for type I and II waters is sufficient for > or = 2-log inactivation of Giardia lamblia cysts. However, in type III water the applied chlorine is masked as chloramine with a much lower disinfection efficiency. In addition to high levels of ammonia, type III groundwater is also contaminated by arsenic that is not satisfactory removed during treatment. N-nitrosodimethylamine, a potential carcinogen suspected to be formed during chloramination processes, was below the detection limit of 0.02 microgram/L in type III water.  相似文献   

15.
The kinetics of oxidation and disinfection processes during ozonation in a full-scale reactor treating secondary wastewater effluent were investigated for seven ozone doses ranging from 0.21 to 1.24 g O3 g−1 dissolved organic carbon (DOC). Substances reacting fast with ozone, such as diclofenac or carbamazepine (kP,O3 > 104 M−1 s−1), were eliminated within the gas bubble column, except for the lowest ozone dose of 0.21 g O3 g−1 DOC. For this low dose, this could be attributed to short-circuiting within the reactor. Substances with lower ozone reactivity (kP,O3 < 104 M−1 s−1) were only fully eliminated for higher ozone doses.The predictions of micropollutant oxidation based on coupling reactor hydraulics with ozone chemistry and reaction kinetics were up to a factor of 2.5 higher than full-scale measurements. Monte Carlo simulations showed that the observed differences were higher than model uncertainties. The overestimation of micropollutant oxidation was attributed to a protection of micropollutants from ozone attack by the interaction with aquatic colloids. Laboratory-scale batch experiments using wastewater from the same full-scale treatment plant could predict the oxidation of slowly-reacting micropollutants on the full-scale level within a factor of 1.5. The Rct value, the experimentally determined ratio of the concentrations of hydroxyl radicals and ozone, was identified as a major contribution to this difference.An increase in the formation of bromate, a potential human carcinogen, was observed with increasing ozone doses. The final concentration for the highest ozone dose of 1.24 g O3 g−1 DOC was 7.5 μg L−1, which is below the drinking water standard of 10 μg L−1. N-Nitrosodimethylamine (NDMA) formation of up to 15 ng L−1 was observed in the first compartment of the reactor, followed by a slight elimination during sand filtration. Assimilable organic carbon (AOC) increased up to 740 μg AOC L−1, with no clear trend when correlated to the ozone dose, and decreased by up to 50% during post-sand filtration. The disinfection capacity of the ozone reactor was assessed to be 1-4.5 log units in terms of total cell counts (TCC) and 0.5 to 2.5 log units for Escherichia coli (E. coli). Regrowth of up to 2.5 log units during sand filtration was observed for TCC while no regrowth occurred for E. coli. E. coli inactivation could not be accurately predicted by the model approach, most likely due to shielding of E. coli by flocs.  相似文献   

16.
Oxidant decay and bromate formation were studied under light and dark conditions in 5.15 and 30‰ artificial sea-water and 5‰ natural estuarine water following ozonation or chlorination. For both oxidants, light exposure accelerated the residual oxidant decay rates which were inversely related to sample salinities in artificial sea-water. Significant quantities of bromate were produced in light-exposed, chlorinated samples with an initial residual oxidant concentration of 70 μM (5mg l−1 as total residual chlorine) but not at lower residual oxidant concentrations or in non-photolyzed samples. No bromate was formed in any of the chlorinated natural estuarine water samples. Bromate production was much greater in ozonated samples than in chlorinated ones and was formed in two distinct stages. Photolytic bromate formation decreased with increasing bromide concentration in both chlorinated and ozonated artificial sea-water. Bromate formation was completely inhibited in the presence of NH3-N and estuarine sediment. The same free radical mechanism is proposed for both ozone-induced and photolytic-induced bromate formation in artificial sea-water.  相似文献   

17.
The effects of combined ozonation and membrane filtration on the removal of the natural organic matter (NOM) and the formation of disinfection by-products (DBPs) were investigated. Ozonation/filtration resulted in a reduction of up to 50% in the dissolved organic carbon (DOC) concentration. Furthermore, humic substances were converted to non-humic substances, with changes in the humic and non-humic substance concentrations of up to −50% and +20%, respectively. Ozonation/filtration resulted in the formation of partially oxidized compounds from NOM that were less reactive with chlorine, decreasing the concentration of simulated distribution system total trihalomethanes (SDS TTHMs) and simulated distribution system halo acetic acids (SDS HAAs) by up to 80% and 65%, respectively. Reducing the molecular weight cut-off (MWCO) of the membranes resulted in reductions in the concentrations of SDS TTHMs and SDS HAAs. Using a membrane with a 5 kD MWCO, the minimum gaseous ozone concentration required to bring about effective NOM degradation and meet regulatory requirements for chlorinated DBPs was 2.5 g/m3.  相似文献   

18.
Nitrification was developed within a biological filter to simultaneously remove biodegradable organic matter (BOM) and residual ammonia added to control bromate formation during the ozonation of drinking water. Testing was performed at pilot-scale using three filters containing sand and anthracite filter media. BOM formed during ozonation (e.g., assimilable organic carbon (396-572 microg/L), formaldehyde (11-20 microg/L), and oxalate (83-145 microg/L)) was up to 70% removed through biofiltration. Dechlorinated backwash water was required to develop the nitrifying bacteria needed to convert the residual ammonia (0.1-0.5 mg/L NH(3)-N) to nitrite and then to nitrate. Chlorinated backwash water resulted in biofiltration without nitrification. Deep-bed filtration (empty-bed contact time (EBCT) = 8.3 min) did not enhance the development of nitrification when compared with shallow-bed filtration (EBCT = 3.2 min). Variable filtration rates between 4.8 and 14.6 m/h (2 and 6 gpm/sf) had minimal impact on BOM removal. However, conversion of ammonia to nitrite was reduced by 60% when increasing the filtration rate from 4.8 to 14.6 m/h. The results provide drinking water utilities practicing ozonation with a cost-effective alternative to remove the residual ammonia added for bromate control.  相似文献   

19.
Halonitromethane formation potentials in drinking waters   总被引:5,自引:0,他引:5  
Halonitromethanes (HNMs) are highly cyto- and genotoxic nitrogenous disinfection by-products (DBPs) that have been detected in some water distribution systems. In this study, a systematic investigation was conducted to examine the formation potential of HNMs in drinking waters under different oxidation conditions. Formation potential tests of samples obtained from various drinking water sources showed that ozonation-chlorination produced the highest HNM yields followed by in the order of chlorination, ozonation-chloramination, and chloramination. Similar or higher HNM yields were observed in the treated waters (i.e., after conventional water treatment) than in the raw waters, indicating that hydrophilic natural organic matter (NOM) components that are not effectively removed by conventional treatment processes are likely the main precursors of HNMs. This was further confirmed by examining HNM formation potentials of NOM fractions obtained with resin fractionation. Hydrophilic NOM fractions (HPI) showed significantly higher HNM yields than hydrophobic (HPO) and transphilic (TPH) fractions. The correlation analysis of HNM formation potentials during ozonation-chlorination with various water quality parameters showed the best correlation between the HNM yields and the ratio of dissolved organic carbon to dissolved organic nitrogen concentrations in the water samples tested.  相似文献   

20.
The oxidation of bromoxynil and trifluralin was investigated using ozone (O3) and O3 combined with hydrogen peroxide (H2O2) in natural waters using batch reactors. The results indicated that these pesticides could not be completely degraded during ozonation, achieving degradation levels lower than 50%. An enhancement of the level of degradation was observed using O3/H2O2 process. A biphasic behaviour of O3 was also observed. Depending on the experimental conditions, the rate constant for O3 decomposition was estimated to be between 7.4 × 10−4 s−1 to 5.8 × 10−2 s−1, and 3.2 × 10−3 s−1 to 4.2 × 10−2 s−1 for bromoxynil and trifluralin samples, respectively. Acute toxicity analysis performed using Microtox® showed a decrease in the toxic effects of the samples on the luminescent bacteria during the first few minutes of treatment, followed by an increase of the toxic effects at the end of the reaction for both pesticides. The quantification of oxidation by-products generated during treatment was also addressed. The total molar balances of the degradation by-products versus the initial pesticide concentrations ranged from 60 to 103% under different experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号