首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
A number of water treatment works (WTW) in the north of England (UK) have experienced problems in reducing the dissolved organic carbon (DOC) present in the water to a sufficiently low level. The problems are experienced in autumn/winter when the colour increases and the coagulant dose at the WTW needs to be increased in order to achieve sufficient colour removal. However, the DOC content of the water varies little throughout the year. To investigate this further, the water was fractionated using resin adsorption techniques into its hydrophobic (fulvic and humic acid fractions) and hydrophilic (acid and non-acid fractions) components. The fractionation process yields useful information on the changing concentration of each fraction but is time consuming and labour intensive. Here, a method of rapidly determining fraction concentration was developed using fluorescence spectroscopy. The model created used synchronous spectra of fractionated material compared against bulk water spectra and predicted the fraction concentrations to within 10% for a specific water. The model was unable to predict fraction concentrations for waters from a different watershed.  相似文献   

2.
Sludge dewatering is of major interest in sludge volume reduction and handling properties improvement. Here we report an approach of fluorescence excitation-emission matrix (EEM) combined with parallel factor (PARAFAC) analysis to elucidate the factors that influence sludge dewaterability. Sludge flocs from 11 full-scale wastewater treatment plants were collected to stratify into different extracellular polymeric substances (EPS) fractions and then to characterize their fluorescence EEMs. Both the normalized capillary suction time (CST) and specific resistance to filtration (SRF) were applied to determine sludge dewaterability. The results showed that fluorescence EEMs of tightly bound fractions were not affected by the wastewater sources. In contrast, fluorescence EEMs of loosely bound fractions were affected by the wastewater sources. All the fluorescence EEMs could be successfully decomposed into a six-component model by PARAFAC analysis. Both normalized CST and SRF were significantly correlated with component 1 [excitation/emission (Ex/Em) = (220, 275)/350] in the supernatant fraction, with components 5 [Ex/Em = (230, 280)/430] and 6 [Ex/Em = (250, 360)/460] in the slime and LB-EPS fraction. These results reveal that except for proteins-like substances (component 1), sludge dewaterability is also affected by humic acid-like and fulvic acid-like substances (components 5 and 6) in the slime and LB-EPS fractions. Furthermore, this paper presents a promising and facile approach (i.e., EEM-PARAFAC) for investigating sludge dewaterability.  相似文献   

3.
The organic matter of wastewater was fractionated into settleable (i.e., particulate) and non-settleable (i.e., colloidal + soluble) fractions by settling followed by 0.22 micron filtration. Particulate, colloidal and soluble proportions were found to be relatively constant (45, 31 and 24% of the total COD, respectively). Transfer of soluble fraction always occurred from the wastewater to the activated sludge flocs, whereas bidirectional transfer occurred for the colloidal fraction. The transfer of soluble and colloidal matter reached a steady state after 40 min-mixing and 20 min-mixing, respectively. Desorption of a part of the colloidal organic matter pre-sorbed on the activated sludge flocs was evidenced. The biosorption capacity of activated sludge was around 40-100 mgCODg-1TSS. The biosorbable fraction of wastewater represented on average 45% of the non-settleable fraction.  相似文献   

4.
Autothermal thermophilic aerobic digestion (ATAD) is a biological wastewater treatment process used for stabilisation of domestic, animal, food and pharmaceutical sludges, and wastewater. It produces a high-quality effluent due to thermophilic processing conditions, however the stabilised sludge has poor settling characteristics, a high water content, low compaction capacity and is difficult to dewater by mechanical processes alone. These factors impact transport and disposal of processed ATAD sludge. We have carried out a detailed morphological characterisation of ATAD sludge at all stages of the ATAD process in an attempt to determine key characteristics of the sludge that might be responsible for its poor dewatering and settleability. A number of microscopic techniques including electron, optical, wide field and laser scanning confocal microscopy were applied to fresh, fixed or embedded sludge taken at various stages during a full scale ATAD process treating domestic sludge. The spatial distributions of structural sludge matrix components were determined and suggested a highly dynamic sludge morphology during the overall process. Large amounts of fibres were observed in the feed sludge, whereas thermophilic sludge liquor with low settleability was shown to have a lower protein to polysaccharide ratio (1:0.9) compared to the easily settled fraction where ratio values were in the range of (1:1.14-1:1.7) with a prevalence of protein constituents. ATAD sludge was also shown to contain colloids, slime, cellulose micro-particles and multiple hydrophobic droplets in the bulk liquor, factors that may markedly impact on sludge dewaterability characteristics. Laser scanning confocal microscopy demonstrated a superior ability to identify composition and spatial localisation of structural constituents in such a dispersed, high water content sludge.  相似文献   

5.
Bose P  Reckhow DA 《Water research》2007,41(7):1516-1524
Natural organic matter (NOM) was extracted from a moderately colored, eutrophic surface water source (Forge Pond, Granby, MA), and fractionated into quasi-homogeneous fractions. Fulvic acid (FA) and hydrophilic neutrals (HN) were the two most abundant NOM fractions that were isolated. Adsorption affinity of the isolated NOM fractions on preformed aluminum hydroxide flocs increased with increase in specific organic charge of the fractions, except for the two most highly charged fractions, FA and hydrophilic acids (HAA), which showed less adsorption affinity than expected based on their specific organic charge. Prior ozonation of FA and HN fractions resulted in a decline and an increase, respectively, in their adsorption affinity on aluminum hydroxide surface. Prior ozonation of Forge Pond raw water resulted in a progressive decline in dissolved organic carbon (DOC) removal by alum coagulation with increase in ozone dose. It appeared that ozone applied to raw water reacted preferentially with the humic fraction of NOM, resulting in the detrimental effects of ozonation on subsequent NOM removal by alum coagulation being magnified. Forge Pond raw water was pre-coagulated to remove humic substances. Ozonation of the pre-coagulated water demonstrated the beneficial effects of ozonation on the removal of non-humic NOM through alum coagulation. A strategy for staged coagulation with intermediate ozonation was proposed for waters containing both humic and non-humic NOM for maximum DOC and specific UV absorbance at 254nm (SUVA) removal.  相似文献   

6.
Biosorption of humic and fulvic acids to live activated sludge biomass   总被引:6,自引:0,他引:6  
Biosorption of high molecular weight humic substances (HS) to activated sludge (AS) biomass may be considered as a preliminary step previous to enzymatic hydrolysis breakdown and biological uptake. Two standard HS, Suwannee River humic and fulvic acids, were biosorbed onto live AS biomass collected from full-scale wastewater treatment plants. Biosorption isotherms were corrected for interference from organic matter desorbed from AS biomass. The effect of pH, calcium and ionic strength on biosorption was tested. HS biosorption to live AS biomass obeyed the Freundlich isotherm equation. Biosorption increased with decreasing pH, increasing calcium and ionic strength concentration. Higher biosorption at low pH may be attributed to hydrophobic interactions between HS and AS biomass extracellular polymers (EPS). Hydrophobic and cationic bridging effects between HS and AS EPS were the mechanisms responsible for biosorption under the presence of divalent cations; however, the former was most significant at low pH, whereas the latter was predominant near neutral pH. The effect of ionic strength on HS biosorption followed the colloidal chemistry theory as the electric double layer became compressed when the ionic strength increased, resulting in closer approach of HS and AS biomass. The humic acid fraction of Suwannee River was removed more efficiently than its fulvic acid fraction because the humic acid was more hydrophobic. These results showed that pH, divalent cation concentration and ionic strength play an important role in the fate and removal of influent wastewater HS in full-scale treatment plants.  相似文献   

7.
Wentzel MC  Ubisi MF  Lakay MT  Ekama GA 《Water research》2002,36(20):5074-5082
In the bioreactor of the nitrification denitrification (ND)-activated sludge system, the mixed liquor is made up of organic and inorganic materials. In the current design procedures and simulation models, the influent wastewater characteristics and biological processes that influence the bioreactor mixed liquor organic solids (as volatile suspended solids, VSS, or COD) are explicitly included. However, the mixed liquor total suspended solids (TSS, i.e. organic+inorganic solids) are calculated simply from empirical ratios of VSS/TSS. The TSS concentration is fundamental in the design of secondary settling tanks and waste activated sludge disposal. Clearly, the empirical approach to obtaining an estimate for TSS is not satisfactory within the framework of a fundamentally based model. Accordingly, the incorporation of the inorganic material present in the influent wastewater into ND-activated sludge system mixed liquor was investigated. From an experimental investigation into the distribution of inorganics in the influent, mixed liquor and effluent of a laboratory-scale ND-activated sludge system, it was concluded inter alia that (i) of the total inorganic solids in the influent, only a small fraction (2.8–7.5%) is incorporated into the mixed liquor, (ii) most of the inorganics in the influent (mean 88%) and effluent (mean 98.5%) are in the dissolved form, the balance being particulate, and (iii) the influent and effluent inorganic dissolved solids concentrations are closely equal (mean effluent to influent ratio 100%). Further, a number of models were developed to quantify the mixed liquor inorganic, and, hence, total solids. From an evaluation of these models against the experimental data, it would appear that the best approach to model the incorporation of inorganics into the activated sludge mixed liquor is to follow the concepts and principles used to develop the existing models for organic materials. With this approach, reasonably close correlation between predicted and measured data for mixed liquor and effluent inorganic concentrations were obtained.  相似文献   

8.
Wei LL  Wang K  Zhao QL  Jiang JQ  Kong XJ  Lee DJ 《Water research》2012,46(14):4387-4396
Correlation between fractional, biodegradable and spectral characteristics of sludge extracellular polymeric substances (EPS) by different protocols has not been well established. This work extracted sludge EPS using alkaline extractants (NH4OH and formaldehyde + NaOH) and physical protocols (ultrasonication, heating at 80 °C or cation exchange resin (CER)) and then fractionated the extracts using XAD-8/XAD-4 resins. The alkaline extractants yielded more sludge EPS than the physical protocols. However, the physical protocols extracted principally the hydrophilic components which were readily biodegradable by microorganisms. The alkaline extractants dissolved additional humic-like substances from sludge solids which were refractory in nature. Different extraction protocols preferably extracted EPS with distinct fractional, biodegradable and spectral characteristics which could be applied in specific usages.  相似文献   

9.
10.
Effect of temperature shocks on membrane fouling in membrane bioreactors   总被引:1,自引:0,他引:1  
Temperature is known to influence the biological performance of conventional activated sludge systems. In membrane bioreactors (MBRs), temperature not only affects the bioconversion process but is also shown to have an effect on the membrane performance. Four phenomena are generally reported to explain the higher resistance for membrane filtration found at lower temperatures: (1) increased mixed liquor viscosity, reducing the shear stress generated by coarse bubbles, (2) intensified deflocculation, reducing biomass floc size and releasing EPS into the mixed liquor, (3) lower backtransport velocity and (4) reduced biodegradation of COD. Although the higher resistance at low temperatures has been reported in several papers, the relation with supernatant composition has not been investigated before. In this paper, the composition of the soluble fraction of the mixed liquor is related to membrane performance after exposing the sludge to temperature shocks. Flux step experiments were performed in an experimental system at 7, 15, and 25° Celsius with sludge that was continuously recirculated from a pilot-scale MBR. After correcting the permeate viscosity for temperature, higher membrane fouling rates were obtained for the lower temperature in combination with low fouling reversibility. The soluble fraction of the MBR mixed liquor was analysed for polysaccharides, proteins and submicron particle size distribution. At low temperature, a high polysaccharide concentration was found in the experimental system as compared to the MBR pilot. Upon decreasing the temperature of the mixed liquor, a shift was found in particle size towards smaller particles. These results show that the release of polysaccharides and/or submicron particles from sludge flocs could explain the increased membrane fouling at low temperatures.  相似文献   

11.
Hu JY  Ong SL  Shan JH  Kang JB  Ng WJ 《Water research》2003,37(19):4801-4809
Dissolved organic matters (DOMs) from two batches of secondary effluent collected from a local water reclamation plant were fractionated using column chromatographic method with non-ionic resins XAD-8, AG MP-50 and IRA-96. Seven isolated fractions were obtained from the fractionation study and these fractions were quantified using DOC, UV(254) and SUVA values. The fractionation study revealed that the secondary effluent samples comprised about 47.3-60.6% of hydrophobic and 39.4-52.7% of hydrophilic solutes. The treatability of each isolated fraction was investigated by subjecting each fraction to reverse osmosis (RO) treatment individually. It was noted that RO process could achieve high DOC rejections for acid and neutral fractions (ranging from 80% to 98% removal) probably due to the negative charge of RO membrane. The results obtained also indicated that hydrophobicity of DOMs is significant in determining treatability of organic species by RO process. The performance of RO in terms of DOC rejection of un-fractionated secondary effluent was also investigated to assess possible effects of interactions among organic fractions on their treatability by RO process. It was noted that DOC rejection associated with the un-fractionated secondary effluent was generally higher (ranging from 2% to 45%) than the corresponding rejection obtained from each individual fraction isolated from the secondary effluent. This finding suggested there is a beneficial interaction among the fractions that in turn has contributed towards a better overall DOC rejection performance by RO treatment.  相似文献   

12.
Membrane fouling remains a major obstacle for wider application of membrane bioreactors (MBRs) to wastewater treatment. Polysaccharides in mixed liquor suspensions in the reactors are thought to be mainly responsible for the evolution of membrane fouling in MBRs. However, details of polysaccharides causing membrane fouling in MBRs are still unknown. In this study, polysaccharides in a mixed liquor suspension of a pilot-scale MBR treating municipal wastewater were fractionated by using lectins, special proteins that bind to specific polysaccharides depending on their properties. Fouling potentials of the fractionated polysaccharides were assessed by bench-scale dead-end filtration tests. It was clearly shown that the degrees of fouling caused by fractionated polysaccharides were significantly different. The amounts of polysaccharides in each fraction could not explain the variations in the fouling, indicating the presence of polysaccharides with high specific fouling potentials. To investigate structures and origins of the polysaccharides with high fouling potentials, matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)/mass spectrometry (MS) analysis was applied to the fractionated polysaccharides after partial hydrolysis. Several mass peaks obtained could be assigned to fragments of structures of polysaccharides (i.e., oligosaccharides) reported in a database/literature. This is the first report showing the plausible structures of polysaccharides in MBRs based on MS. A deeper understanding and effective control of membrane fouling in MBRs could be achieved with information obtained by the approach used in this study.  相似文献   

13.
Sewage sludges obtained from seven wastewater treatment plants from the province of Salamanca, Spain, were periodically sampled to determine seasonal and time variation of their elemental composition over 2000 to 2002. The aim of this paper was to provide additional insight to evaluate the potential environmental impact following soil incorporation of these materials as amendments. Aqua regia extractable metals (pseudo total content) of Cd, Cr, Cu, Ni, Pb and Zn were determined and furthermore, the main chemical forms of metals within the sludge were evaluated using a five-step fractionation procedure. All the studied sludges displayed high fertility properties due to their richness of OC, P and K. Total mean concentrations of Cd, Cr, Cu, Ni, Pb and Zn in the sludges were within the regulation of the Spanish legislation. Using an multifactor analysis of variance, significant differences between Cr, Cu, Ni, Pb and Zn pseudo total contents (p<0.01) of sludges at different sites were found while the Cd content was statistically similar. Also significant differences were found between these pseudo total contents of heavy metals in samples collected along the time after three years (0.001相似文献   

14.
Integrated kraft pulp and paper mill wastewater was characterized before (influent) and after (effluent) the activated sludge process by microfiltration (8, 3, 0.45 and 0.22 μm) and ultrafiltration (100, 50, 30 and 3 kDa) into different size fractions. Wood extractives, lignin, suspended solids and certain trace elements were determined in each fraction. Forty four percent of the resin and fatty acids in the influent (12.8 mg/L) occurred in particles (>0.45 μm), 20% as colloids (0.45 μm-3 kDa) and 36% in the <3 kDa fraction. The corresponding values for sterols (1.5 mg/L) were 5, 46 and 49%. In the effluent, resin and fatty acids (1.45 mg/L) and sterols (0.26 mg/L) were mainly present in the <3 kDa fraction, as well as a small proportion in particles. β-sitosterol was present in particles in the effluent (88 ± 50 μg/L). Lignin in the influent was mainly in the colloidal and <3 kDa fractions, whereas in the effluent it was mainly in the <3 kDa fraction. Thus the decrease of lignin in the biological treatment was concentrated on the colloidal fraction. In the influent, Mn, Zn and Si were mainly present in the <3 kDa fraction, whereas a significant proportion of Fe and Al were found also in the particle and colloidal fractions. In the effluent, Fe and Al were mainly present in the colloidal fraction; in contrast, Mn, Zn and Si were mainly in the <3 kDa fraction. The results indicated that the release of certain compounds and elements into the environment could be significantly decreased or even prevented simply by employing microfiltration as a final treatment step or by enhancing particle removal in the secondary clarifier.  相似文献   

15.
Yu GH  He PJ  Shao LM  He PP 《Water research》2008,42(18):4637-4644
A well-defined fractionation approach for sludge flocs was applied to a better understanding of the underlying mechanism of improving the production of volatile fatty acids (VFA) in the hydrolysis and acidification processes at pH 10.0. Specifically, sludge flocs were fractionated through centrifugation and ultrasound into four fractions: (1) slime, (2) loosely bound extracellular polymeric substances (LB-EPS), (3) tightly bound EPS (TB-EPS) and (4) pellet. Result showed that during 20 days of fermentation, the total VFA production at pH 10.0 was higher, from 2 to 34 times, than that at pH 5.5. At pH 10.0, however, the enzyme activities (i.e. protease, alpha-amylase, alkaline phosphatase and acid phosphatase) in all fractions of sludge flocs were all lower than pH 5.5, which strongly suggests that the biotic effect was not the leading cause of the VFA improvement. Further investigation suggests that pH 10.0 could significantly improve the VFA production through the break of sludge matrix which is usually hydrolyzed by the extracellular enzymes embedded in itself, increase the effective contact between extracellular organic matters and enzymes, and create a favorable environment for microbes to accumulate VFA. Hydrolysis and acidification at pH 10.0 can be considered as part of an appropriate solution for tertiary treatment and contribute to the headway toward the goal of sustainable water treatment technologies.  相似文献   

16.
Effect of soil composition and dissolved organic matter on pesticide sorption   总被引:24,自引:0,他引:24  
The effect of the solid and dissolved organic matter fractions, mineral composition and ionic strength of the soil solution on the sorption behaviour of pesticides were studied. A number of soils, chosen so as to have different clay mineral and organic carbon content, were used to study the sorption of the pesticides atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), 2,4-D ((2,4-dichlorophenoxy)acetic acid), isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) and paraquat (1,1'-dimethyl-4,4'-bipyridinium) in the presence of low and high levels of dissolved organic carbon and different background electrolytes. The sorption behaviour of atrazine, isoproturon and paraquat was dominated by the solid state soil components and the presence of dissolved organic matter had little effect. The sorption of 2,4-D was slightly affected by the soluble organic matter in the soil. However, this effect may be due to competition for adsorption sites between the pesticide and the soluble organic matter rather than due to a positive interaction between the pesticide and the soluble fraction of soil organic matter. It is concluded that the major factor governing the sorption of these pesticides is the solid state organic fraction with the clay mineral content also making a significant contribution. The dissolved organic carbon fraction of the total organic carbon in the soil and the ionic strength of the soil solution appear to have little or no effect on the sorption/transport characteristics of these pesticides over the range of concentrations studied.  相似文献   

17.
《Water research》1987,21(7):809-812
The relative efficiences of a buffered beef extract solution, sewage secondary effluent, and distilled water, were compared in a study designed to simulate leaching of indigenous enteric viruses from raw primary sewage sludge. The initial sludge liquid fractions, termed sludge liquor, and leachates from five successive washings with one of the three test fluids were removed from the sludge samples by vacuum filtration through stainless steel mesh screens. The highest calculated efficiency for virus leaching was 2.8 ±1.4% obtained with the beef extract solution. This indicated leaching to be a very inefficient process and may suggest that viruses present in sewage sludges will remain highly solids-associated following land disposal. The ratio of indigenous viruses in the leachates vs sludge liquor, for any particular sample, was found to be statistically dependent upon the square of the sludge samples original percentage solids content. Together, the developed leaching technique and statistical equation provide a simple way to compare the relative amounts of leachable viruses present in samples of raw wastewater sludge.  相似文献   

18.
The potential of activated sludge to catalyse bio-oxidation of arsenite [As(III)] to arsenate [As(V)] and bio-reduction of As(V) to As(III) was investigated. In batch experiments (pH 7, 25 degrees C) using activated sludge taken from a treatment plant receiving municipal wastewater non-contaminated with As, As(III) and As(V) were rapidly biotransformed to As(V) under aerobic condition and As(III) under anaerobic one without acclimatisation, respectively. Sub-culture of the activated sludge using a minimal liquid medium containing 100mg As(III)/L and no organic carbon source showed that aerobic arsenic-resistant bacteria were present in the activated sludge and one of the isolated bacteria was able to chemoautotrophically oxidise As(III) to As(V). Analysis of arsenic species in a full-scale oxidation ditch plant receiving As-contaminated wastewater revealed that both As(III) and As(V) were present in the influent, As(III) was almost completely oxidised to As(V) after supply of oxygen by the aerator in the oxidation ditch, As(V) oxidised was reduced to As(III) in the anaerobic zone in the ditch and in the return sludge pipe, and As(V) was the dominant species in the effluent. Furthermore, co-precipitation of As(V) bio-oxidised by activated sludge in the plant with ferric hydroxide was assessed by jar tests. It was shown that the addition of ferric chloride to mixed liquor as well as effluent achieved high removal efficiencies (>95%) of As and could decrease the residual total As concentrations in the supernatant from about 200 microg/L to less than 5 microg/L. It was concluded that a treatment process combining bio-oxidation with activated sludge and coagulation with ferric chloride could be applied as an alternative technology to treat As-contaminated wastewater.  相似文献   

19.
Dissolved organic matter (DOM) in effluents from sewage and human-wastes treatment plants (STPEs and HWTPEs) was fractionated using resin adsorbents into six classes: aquatic humic substances (AHS), hydrophobic bases (HoB), hydrophobic neutrals (HoN), hydrophilic acids (HiA), hydrophilic bases (HiB), and hydrophilic neutrals (HiN). DOM-fraction distribution varied substantially depending on the kind of wastewater and the type of treatment process. AHS and HiA dominated in all effluents, collectively accounting for more than 55% of the DOM measured as dissolved organic carbon (DOC). In particular, HiA were the most abundant fraction in the effluents, constituting 32-74% of the DOM. AHS appeared to be the second most dominant fraction and varied considerably, accounting for 3-28% of the DOM. The HoN fraction also varied from 0-21%. AHS, HoN, and HiA were the fractions that changed substantially and differed characteristically among the samples studied. The ratios of ultraviolet absorbance to DOC (UV: DOC ratio) in all effluents exhibited a common relationship: AHS> total DOM > HiA. Nevertheless, the ratios were substantially different between STPEs and HWTPEs and among HWTPEs. For HWTPEs, the effluent from the chemical coagulation process had the highest UV: DOC ratios. On the other hand, the effluent from the ultrafiltration and activated carbon adsorption processes had the lowest ratios. Molecular size distribution of the effluents was determined by size exclusion chromatography and found to exhibit a relatively narrow size range and low weight-averaged molecular weights ranging from 380 to 830 g mol(-1). The weight-averaged molecular weight of DOM increased as the UV: DOC ratio of total DOM increased.  相似文献   

20.
污水处理厂脱水污泥中重金属的形态分布特征研究   总被引:2,自引:0,他引:2  
研究了污水处理厂脱水污泥中重金属的形态及总量分布特征,对所采集的活性污泥和消化污泥样品的分析结果表明,镉、铜、铁和锌的主要分布形态为可还原态,在活性污泥中分别占各自总量的48.67%、83.74%、87.21%和64.90%,在消化污泥中则分别占各自总量的37.62%、83.44%、65.99%和61.64%;铬主要以残渣态存在,在活性污泥和消化污泥中分别占其总量的85.83%和67.64%;活性污泥中锰主要以弱酸提取态和可还原态存在,分别占47.16%和44.69%,在消化污泥中则主要以弱酸提取态存在,占61.69%;铅的5种形态分布比较均衡。活性污泥中7种重金属的总量呈现铁>铜>锌>锰>铬>铅>镉的趋势;消化污泥中7种重金属的含量排序则为铁>锰>锌>铜>铬>铅>镉。活性污泥中7种重金属的总量均高于消化污泥。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号