首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
王佐  李虹 《供水技术》2010,4(6):24-27
针对大连大沙沟净水厂原有普通快滤池过滤周期短、产水量下降、反冲洗效果不佳等问题,进行了技术改造。将原有中阻力陶瓷滤砖配水系统改为Azurfloor整体滤板小阻力长柄滤头配水,煤-砂滤料改为石英砂均质滤料,单一水反冲洗改为气水反冲洗,并完善了滤池的自动控制系统。运行情况表明,改造后滤池出水水质提高,反冲洗效果明显改善,产水量增加了10×104m3/d,运行成本减少且滤站实现了自动化运行,经济效益和社会效益显著。  相似文献   

2.
Granular activated carbon (GAC) adsorbers are often the penultimate stage of surface water treatment and provide ideal habitats for invertebrates. Proliferation of chlorine-resistant invertebrates in GAC adsorbers may lead to their efflux into distribution systems, possibly resulting in contamination of customers' tap water. GAC adsorber sampling and laboratory experiments were undertaken to determine the effects of routine backwashing on GAC adsorber populations of the chlorine-resistant snail Potamopyrgus jenkinsi at a water treatment works. GAC adsorber sampling results suggested that routine backwashing altered the spatial distribution of snails, but not their overall abundance. In small-scale glass columns 40-50% of the smallest (0.3-0.6 mm shell height) juvenile snails were removed by a GAC backwash bed expansion of 30-40%; however, bed expansions of greater than 20% were not possible in the GAC adsorbers.  相似文献   

3.
《Water research》1996,30(10):2502-2507
A significant consideration in forward planning for water treatment works design and operation concerns the effectiveness of a filtration plant in providing a barrier to particulates in the low micrometre size range, including Cryptosporidium oocysts. The performance of rapid gravity filtration plants is believed to be dependent on backwash and start-up regimes. It was the aim of this study to optimize direct sand filtration by identifying optimum filter backwash and start-up conditions which minimized the passage of particulates into the filtrate. The filter ripening period has long been identified as a cause for concern with respect to particulate passage into the filtrate; this work has shown that up to 40% of all particles that pass into supply during a 48 h run, do so in the first hour of operation. Optimum combined air water “collapse-pulsing” backwash durations were identified that reduced the number of 2–5 μm particles entering the filtrate, especially during the ripening period. Slow start-up was also found to reduce the number of 2–5 μm particles in the filtrate during the ripening period. The reductions in particulate passage resulting from a slow start was found to be media dependent, with smaller media requiring a longer slow start duration than coarser media.  相似文献   

4.
A high microbiological quality of drinking water must be ensured to protect public health. The filtration techniques that are used in treating drinking water play an important role; however, a biofilm can form on granular-media filters and the accumulated bacteria can slough off and enter the filtered water.
The aim of this research was to examine (a) the potential for biofilm formation and detachment from filter sand, and (b) the effect of different backwash regimes on biofilm removal. During the operation of the filter, bacteria became attached to the sand media, particularly in the top 30 mm of the filter bed. A water-only backwash at 20% and 40% bed expansion demonstrated poor removal of biofilm throughout the depth of the bed. Collapse-pulsing is a more efficient method and results in a reduction in the number of bacteria in the filtered water.  相似文献   

5.
考察了沸石-无烟煤双层滤料生物滤池处理微污染水的运行效能.结果表明,沸石-无烟煤生物滤池可以有效提高出水水质,对CODMn、NH3-N及浊度的去除率分别达到39.5%,93.6%和91.3%,而且工作区间主要在滤层上部40 cm内;反冲洗对滤料表面附着的微生物膜影响很小,生物膜在反冲洗后1.5 h内能恢复到反冲洗前的水平.  相似文献   

6.
DBPs removal in GAC filter-adsorber   总被引:4,自引:0,他引:4  
Kim J  Kang B 《Water research》2008,42(1-2):145-152
A rapid sand filter and granular activated carbon filter-adsorber (GAC FA) were compared in terms of dissolved organic carbon (DOC) and disinfection by-products (DBPs) removal. A water treatment plant (WTP) that had a high ammonia concentration and DOC in raw water, which, in turn, led to a high concentration of DBPs because of a high dose of pre-chlorination, was investigated. To remove DBPs and DOC simultaneously, a conventional rapid sand filter had been retrofitted to a GAC FA at the Buyeo WTP in Korea. The overall removal efficiency of DBPs and DOC was higher in the GAC FA than in the sand filter, as expected. Breakthrough of trihalomethanes (THMs) was noticed after 3 months of GAC FA operation, and then removal of THMs was minimal (<10%). On the other hand, the removal efficiency of five haloacetic acids (HAA(5)) in the GAC FA was better than that of THMs, though adsorption of HAA(5) decreased rapidly after 3.5 months of GAC FA operation. And then, gradual improvement (>90%) in HAA(5) removal efficiency was again observed, which could be attributed to biodegradation. At the early stage of GAC FA operation, HAA(5) removal was largely due to physical adsorption, but later on biodegradation appeared to prevail. Biodegradation of HAA(5) was significantly influenced by water temperature. Similar turbidity removal was noticed in both filters, while better manganese removal was confirmed in the sand filter rather than in the GAC FA.  相似文献   

7.
Amburgey JE 《Water research》2005,39(2-3):314-330
The increased passage of particles and microorganisms through granular media filters immediately following backwashing is a common problem known to the water treatment community as filter "ripening" or maturation. While several strategies have been developed over the years to reduce the impact of this vulnerable period of the filtration cycle on finished water quality, this research involves a recently developed filter backwashing strategy called the extended terminal subfluidization wash (ETSW). ETSW is a method of terminating the backwash cycle with a subfluidization wash for a period of time sufficient to pass one theoretical filter-volume of water upward through the filter. ETSW was shown to remove significantly greater quantities of backwash remnant particles thereby reducing the magnitude of filter ripening turbidity and particle count spikes. Optimum ETSW flow rates were determined for deep-bed anthracite and granular activated carbon filters herein by monitoring filter effluent turbidities and particle counts during the filter ripening period. Optimality of the coagulation process was also shown to influence the magnitude of filter ripening particle passage. ETSW was found to be equally effective for biological and conventional deep-bed anthracite filters.  相似文献   

8.
This study assessed the impact of MIEX pre-treatment, followed by either coagulation or microfiltration (MF), on the effectiveness of pilot granular activated carbon (GAC) filters for the removal of the taste and odour compounds, 2-methylisoborneol (MIB) and geosmin, from a surface drinking water source over a 2-year period. Complete removal of MIB and geosmin was achieved by all GAC filters for the first 10 months, suggesting that the available adsorption capacity was sufficient to compensate for differences in dissolved organic carbon (DOC) entering the GAC filters.Reduction of empty bed contact time (EBCT), in all but one GAC filter, resulted in breakthrough of spiked MIB and geosmin, with initial results inconclusive regarding the impact of MIEX pre-treatment. MIB and geosmin removal increased over the ensuing 12 months until complete removal of both MIB and geosmin was again achieved in all but one GAC filter, which had been pre-chlorinated. Autoclaving and washing the GAC filters had minimal impact on geosmin removal but reduced MIB removal by 30% in all but the pre-chlorinated filter, confirming that biodegradation impacted MIB removal. The impact of biodegradation was greater than any impact on GAC adsorption arising from DOC differences due to MIEX pre-treatment. It is not clear whether, at a lower initial EBCT, MIEX pre-treatment may have impacted on the adsorption capacity of the virgin GAC.The GAC filter maintained at the longer EBCT, which was also pre-chlorinated, completely removed MIB and geosmin for the period of the study, suggesting that the greater adsorption capacity was compensating for any decrease in biological degradation.  相似文献   

9.
A model has been proposed and tested describing the removal of water from the bed surface of a rapid gravity sand filter during a backwash. The model can be used in design to predict the minimum height of the weir above the expanded bed required to prevent media loss and also the minimum length of time for a backwash to obtain a clean bed.  相似文献   

10.
生物活性炭滤池的反冲洗方式研究   总被引:6,自引:3,他引:6  
反冲洗是保证生物活性炭滤池成功运行的一个重要环节,对不同反冲洗方式的效果进行了比较,根据反冲洗废水浊度变化及对滤池出水水质的影响,确立了合理的反冲洗方式,并给出相关的反冲洗强度和反冲洗历时参数,以期为生物活性炭滤池的设计和运行提供参考。  相似文献   

11.
Backwash procedures for deep bed filters were evaluated and compared by means of a new integrated approach based on productivity. For this, different backwash procedures were experimentally evaluated by using a pilot plant for direct filtration. A standard backwash mode as applied in practice served as a reference and effluent turbidity was used as the criterion for filter run termination. The backwash water volumes needed, duration of the filter-to-waste period, time out of operation, total volume discharged and filter run-time were determined and used to calculate average filtration velocity and average productivity.  相似文献   

12.
Nitrification was developed within a biological filter to simultaneously remove biodegradable organic matter (BOM) and residual ammonia added to control bromate formation during the ozonation of drinking water. Testing was performed at pilot-scale using three filters containing sand and anthracite filter media. BOM formed during ozonation (e.g., assimilable organic carbon (396-572 microg/L), formaldehyde (11-20 microg/L), and oxalate (83-145 microg/L)) was up to 70% removed through biofiltration. Dechlorinated backwash water was required to develop the nitrifying bacteria needed to convert the residual ammonia (0.1-0.5 mg/L NH(3)-N) to nitrite and then to nitrate. Chlorinated backwash water resulted in biofiltration without nitrification. Deep-bed filtration (empty-bed contact time (EBCT) = 8.3 min) did not enhance the development of nitrification when compared with shallow-bed filtration (EBCT = 3.2 min). Variable filtration rates between 4.8 and 14.6 m/h (2 and 6 gpm/sf) had minimal impact on BOM removal. However, conversion of ammonia to nitrite was reduced by 60% when increasing the filtration rate from 4.8 to 14.6 m/h. The results provide drinking water utilities practicing ozonation with a cost-effective alternative to remove the residual ammonia added for bromate control.  相似文献   

13.
深床直接过滤工艺深度处理城市污水   总被引:2,自引:0,他引:2  
采用深床直接过滤工艺对城市污水处理厂的二级出水进行了深度处理,考察了同考脱氮除磷的可行性和运行条件。研究表明,通过铁盐絮凝剂的加入,借助微絮凝直接过小可有效去除水中的PO^3-4-P(去除率>90%);通过在滤池前加入甲醇作为外碳源,在滤池中进行同步脱氮,气水联合反冲洗相的冲洗方式可使过滤周期长达40h左右。  相似文献   

14.
福州西区水厂将原有的双阀滤池改造为V型滤池,重点介绍了进水系统、滤板系统、反冲洗排水系统、滤后水系统、反冲洗系统的改造。实践表明,改造后滤后水平均浊度<0.3NTU,反冲洗耗水量<2%,滤池实现了全自动化运行。  相似文献   

15.
城市污水曝气过滤式化学除磷试验研究   总被引:5,自引:3,他引:2  
磷污染与水体富营养化密切相关,研究开发经济、有效的除磷方法是解决当前水体富营养化问题的迫切需要。为此开展了曝气过滤式化学除磷的试验研究,考察了富铁填料层厚度、滤速、气量等对除磷效果的影响。结果表明,曝气过程和曝气量对除磷效果有重要影响,通过适量曝气既可以提高除磷率,又可以控制出水铁含量;当滤速≤3m/h时,滤层厚度〉0.4m便可使出水总磷达到排放标准;气水联合冲洗是对多孔富铁填料进行再生的有效方法。  相似文献   

16.
A conceptual model of the initial degradation phase of filtration is presented as an interface effect between backwashing and filtration. It is shown that the initial degradation of effluent quality is due to the backwash water remnants within the media and the backwash water above the media. The two peak characteristics of initial degradation due to the backwash water remnants within the media and above the media is established by an extensive experimental investigation. A mathematical model for the quality of backwash water as a function of backwash water volume is developed. Deductions made from the mathematical expression confirm the validity of some accepted facts on backwashing and also lay the basis for the peaks in initial degradation.  相似文献   

17.
Wahman DG  Katz LE  Speitel GE 《Water research》2011,45(4):1669-1680
Nitrifying biofilters seeded with three different mixed-culture sources removed trichloromethane (TCM) and dibromochloromethane (DBCM) with removals reaching 18% for TCM and 75% for DBCM. In addition, resuspended biofilm removed TCM, bromodichloromethane (BDCM), DBCM, and tribromomethane (TBM) in backwash batch kinetic tests, demonstrating that the biofilters contained organisms capable of biotransforming the four regulated trihalomethanes (THMs) commonly found in treated drinking water. Upon the initial and subsequent increased TCM addition, total ammonia nitrogen (TOTNH3) removal decreased and then reestablished, indicating an adjustment by the biofilm bacteria. In addition, changes in DBCM removal indicated a change in activity related to DBCM. The backwash batch kinetic tests provided a useful tool to evaluate the biofilm’s bacteria. Based on these experiments, the biofilters contained bacteria with similar THM removal kinetics to those seen in previous batch kinetic experiments. Overall, performance or selection does not seem based specifically on nutrients, source water, or source cultures and most likely results from THM product toxicity, and the use of GAC media appeared to offer benefits over anthracite for biofilter stability and long-term performance, although the reasons for this advantage are not apparent based on research to date.  相似文献   

18.
戚雷强  阮久丽 《供水技术》2013,(5):32-35,38
针对上海市自来水奉贤有限公司第三水厂一期普通快滤池存在冲洗效果差、反冲洗频繁、水耗和电耗高、管理操作复杂等问题,拟将普通快滤池改造为V型滤池。运行结果表明,改造后能够达到V型滤池的处理效果,且可减少反冲洗用水量并降低能耗,以期全面提升水厂管理水平,实现自动化控制的发展目标。  相似文献   

19.
滤池气水反冲洗过程中气与水强度关系的确定   总被引:1,自引:0,他引:1  
以Amirtharajah的关于气水反冲洗的理论为基础,通过对其理论及经验公式的分析和研究,并结合当前运行良好的水厂滤池的生产数据,进一步确定和验证了气水反冲洗的相关控制指标,并得出了气水反冲洗过程中水的强度与气的强度关系的新的经验公式。结果表明,为获得滤池反冲洗的较佳状态,应根据L/D在0.30~0.50内对V/Vmf酌情取值。  相似文献   

20.
为优化曝气生物滤池(BAF)的反冲洗参数,从降低能耗的角度出发,通过模型分析和数学推导,建立了BAF最佳反冲洗周期公式,确定了最佳反冲洗参数,同时考察了反冲洗参数对BAF内微生物作用的影响.结果表明,瞬时产水率和周期平均产水率相等时所对应的滤池运行时间是滤池的最佳反冲洗周期,此时BAF的产水率达到最大;试验条件下的最佳反冲洗参数:先气冲洗3 min,再气水联合反冲洗5 min,最后水漂洗10 min,其中水冲洗和气冲洗强度分别为9和18 L/(m<'2>·s);反冲洗参数对微生物作用的影响较大,反冲洗后BAF进水端处的生物量损失率最大.最佳反冲洗周期公式的建立不仅可提高滤池效率、节省能耗,更重要的是可为实现反冲洗过程的自动控制奠定基础,具有一定的现实意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号