首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
复合膜生物反应器处理生活污水的特性   总被引:1,自引:0,他引:1  
通过对投加填料的膜生物反应器处理生活污水的特性进行了系统的研究 ,研究结果表明投加填料的膜生物反应器的上清液及系统出水COD浓度低于不加填料的 ;反应器稳定运行后膜的通透性随运行时间的延长而缓慢下降 ,且较投加填料前明显增大 ;反应器中 ,附着相和悬浮相污泥共存 ,并以附着生长的微生物为主 ,悬浮污泥浓度低可以有效的减缓膜过滤阻力的上升和膜的堵塞 .维持反应器内总污泥浓度较高的条件下 ,使随混合液进入膜分离的悬浮污泥量保持很低 ,减少了其对膜的通透能力的影响 .  相似文献   

2.
A/O-MBR处理生活污水回用的试验研究   总被引:1,自引:0,他引:1  
采用缺氧-好氧一体式膜生物反应器(A/O-MBR)对生活污水处理回用进行了试验研究.试验结果表明,该系统具有较强的抗冲击负荷能力,膜分离截留对COD的去除起到了决定性作用,生物膜对NH3-N的去除占主要作用.系统出水无色无味,COD、NH3-N的浓度分别为14.82和0.45 mg/L,出水水质优于城市杂用水水质标准(GB/T 18920-2002)和河道景观环境用水水质标准(GB/T 18921-2002).  相似文献   

3.
介绍了膜生物反应器的发展历程,对膜生物反应器的分类以及工艺特点作了阐述,并讨论了膜生物反应器在生活污水、工业废水中的应用,对其发展前景进行了展望.  相似文献   

4.
王磊 《山西建筑》2014,(14):140-142
为了确定针对造纸废水处理的外置式膜生物反应器的最佳运行条件,采用中试膜生物反应器系统处理实际造纸废水,试验对COD和色度的平均去除率分别为93.7%和79.2%,并确定膜组件清洗周期为150 d。  相似文献   

5.
膜生物反应器在水处理中的应用与发展   总被引:3,自引:0,他引:3  
崔丽英  杨成永  武红霞 《山西建筑》2003,29(18):103-104
介绍了国内外膜生物反应器的研究及应用进展,结合膜生物反应器的特点与分类,就其应用现状作了阐述,并指出膜生物反应器技术是一种高效废水处理工艺,具有广阔的应用前景。  相似文献   

6.
He Y  Xu P  Li C  Zhang B 《Water research》2005,39(17):4110-4118
The viability of treating high-concentration food wastewater by an anaerobic membrane bioreactor (AMBR) was studied using polyethersulfone (PES) ultrafiltration membranes PES200, PES300, PES500 and PES700 with norminal molecular weight cutoff (MWCO) ranging from 20,000 to 70,000 Da. Hydraulic and solid retention time significantly affected the treatment performance of the AMBR kept at 60 h and 50 days in the study. The four membranes exhibited a similar efficiency in removal of suspended solids, color, chemical oxygen demand (COD) and bacteria. When the volumetric loading rate was below 4.5 kg/m3d, COD removal rate was in the range of 81-94% and the gas yield stabilized at 0.136 m3/kg COD. The effect of membrane properties including MWCO, hydrophobicity and surface morphology on membrane fouling and cleaning was evaluated. The PES200 membranes with the smallest MWCO and smoothest surface exhibited a serious initial flux decline, whereas the PES700 membranes with the largest MWCO and roughest surface were observed related to the highest flux decline and the lowest recoverable flux rate during long-term operation. Membrane autopsy revealed that the significant flux decline was caused by the formation of a thick biofouling layer onto the membrane surfaces.  相似文献   

7.
Wu J  He C 《Water research》2012,46(11):3507-3515
Due to the inefficiency of aeration measures in preventing fouling by soluble and colloidal particles. The effect of alternating high/low cyclic aeration mode on the membrane fouling in the submerged membrane bioreactor was studied by comparing to fouling in a constant aeration mode. Results indicated a higher overall fouling rate in the cyclic aeration mode than in the constant aeration. However, a higher percentage of reversible fouling was observed for the cyclic aeration mode. The membrane permeability can be more easily recovered from physical cleaning such as backwashing in the cyclic aeration mode. The activated sludge floc size distribution analysis revealed a floc destruction and re-flocculation processes caused by the alternating high/low aeration. The short high aeration period could prevent the destruction of strong strength bonds within activated sludge flocs. Therefore, less soluble and colloidal material was observed in the supernatant due to the preservation of the strong strength bonds. The weak strength bonds damaged in the high aeration period could be recovered in the re-flocculation process in the low aeration period. The floc destruction and re-flocculation processes were suggested to be the main reason for the low irreversible fouling in the cyclic aeration mode.  相似文献   

8.
Fan F  Zhou H  Husain H 《Water research》2006,40(2):205-212
The effects of sludge characteristics on critical flux were examined using a submerged membrane bioreactor pilot plant operated under different process conditions to treat municipal wastewater. The sludge in the membrane tank was characterized by measuring colloidal particle concentration, extracellular polymeric substances (EPS), mixed liquor suspended solids (MLSS), temperature, time to filter (TTF) and diluted sludge volume index (DSVI). The colloidal particle concentration was represented by the colloidal total organic carbon (TOC), which is the TOC difference between the filtrate passing through a 1.5 microm pore size filter and the permeate collected from pilot ultrafiltration membrane modules with a pore size of 0.04 microm. The results showed that the critical flux measured by the stepwise flux method was almost solely related to the colloidal TOC despite different sludges tested. In contrast, MLSS was shown to have little impact on the critical flux within the range examined. Neither TTF nor DSVI could be used to reliably predict the critical flux. Furthermore, colloidal TOC can be attributed to soluble EPS, but not bound EPS. Therefore, it is suggested that colloidal TOC be used as a new filterability index for MBR processes in wastewater treatment.  相似文献   

9.
Implementation of crossflow microfiltration in the field of wastewater treatment was investigated. The membrane used throughout the research was made of multifilament polyester yarn woven in the form of a double interleave cloth with a pore size of 20–40 μm. Secondary effluent and primary settled sewage, from Blyth Sewage Treatment Plant, were used in the investigation. The study showed that the permeation rate (flux) was linearly affected by the crossflow velocity (CFV) in the case of treating secondary effluent. Permeate quality was also found to be affected by the crossflow velocity values. In addition, the effect of feed suspended solids concentration was found to proceed according to the concentration-polarization phenomena. Using the crossflow microfiltration process in treating primary settled sewage, without pretreatment, was found to be impractical due to the low flux values.  相似文献   

10.
An aerobic membrane bioreactor treating municipal wastewater at complete biomass retention was studied in respect of microbiological parameters over a period of 380 days. The results were compared to those obtained from a conventional activated sludge wastewater treatment plant (WWTP) treating the same wastewater. Microscopically, significant changes in the structure of the flocs and of the ratio between free suspended and aggregated cells could be observed. The presence of filamentous bacteria varied from almost not present to very high numbers. With the exception of short periods after changes in operating conditions, protozoa and metazoa were rarely present in the sludge community. The rate of oxygen consumption and the cell detectability by fluorescence in situ hybridizatio (FISH) with rRNA-targeted oligonucleotide probes were used to assess the physiological state of the bacterial cells Oxygen consumption rates of sludge samples obtained from both the conventional and membrane filtration plant wer determined without and after addition of different energy and carbon sources. In contrast to the conventional activate sludge, a pronounced increase in respiration activity upon the addition of organic substrates could be observed in th membrane filtration sludge. In situ probing with the Bacteria-specific probe EUB338 visualized 40-50% of all DAPI stainable bacteria in the membrane bioreactor, compared to 80% cells detectable by FISH in the conventional activate sludge. These results suggest that bacteria present in the highly concentrated biomass of the membrane reactor use the energy supplied for their maintenance metabolism and were not in a physiological state characteristic for growth This assumption could explain the zero net biomass production observed in the reactor.  相似文献   

11.
Non-biodegradable solid wastes of non-intact membrane fibres/flatsheets and modules disposed from membrane bioreactor (MBR) plants are in a great concern for environmental impact. Estimated cumulative amount of the module solid wastes from European countries in the next five years should be larger than 1000 tons in which a proper management strategy and reuse for the disposed solid waste are urgently required. This article was aimed to propose an alternative to make uses of the non-intact membrane fibres for the aerobic biofilm supports and to study the feasibility on process operation of novel moving-fiber biofilm MBR. A system of moving-fiber biofilm membrane bioreactor was designed and evaluated experimentally, including an upflow anaerobic sludge reactor, an aerobic moving-fiber biofilm reactor, and a submerged membrane filtration unit. Start-up method and operating conditions to control the biofilms growing on the moving fibers were investigated. Organic removal rates, optimum operating conditions for the system, and membrane fouling rates at various membrane aeration rates and permeate fluxes were monitored to evaluate the performance of the proposed BF-MBR process.  相似文献   

12.
The effects of microfiltration (MF) as pretreatment for reverse osmosis (RO) on biofouling of RO membranes were analyzed with secondary wastewater effluents. MF pretreatment reduced permeate flux decline two- to three-fold, while increasing salt rejection. Additionally, the oxygen uptake rate (OUR) in the biofouling layer of the RO membrane was higher for an RO system that received pretreated secondary wastewater effluent compared to a control RO system that received untreated secondary effluent, likely due to the removal of inert particulate/colloidal matter during MF. A higher cell viability in the RO biofilm was observed close to the membrane surface irrespective of pretreatment, which is consistent with the biofilm-enhanced concentration polarization effect. Bacterial 16S rRNA gene clone library analysis revealed dominant biofilm communities of Proteobacteria and Bacteroidetes under all conditions. The Cramer-von Mises test statistic showed that MF pretreatment did not significantly change the bacterial community structure of RO membrane biofilms, though it affected bacterial community structure of non-membrane-associated biofilms (collected from the feed tank wall). The finding that the biofilm community developed on the RO membrane was not influenced by MF pretreatment may imply that RO membranes select for a conserved biofilm community.  相似文献   

13.
The total, ammonia-oxidizing, and denitrifying Bacteria in a full-scale membrane bioreactor (MBR) were evaluated monthly for over one year. Microbial communities were analyzed by denaturing gradient gel electrophoresis (DGGE) and clone library analysis of the 16S rRNA and ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) genes. The community fingerprints obtained were compared to those from a conventional activated sludge (CAS) process running in parallel treating the same domestic wastewater. Distinct DGGE profiles for all three molecular markers were observed between the two treatment systems, indicating the selection of specific bacterial populations by the contrasting environmental and operational conditions. Comparative 16S rRNA sequencing indicated a diverse bacterial community in the MBR, with phylotypes from the α- and β-Proteobacteria and Bacteroidetes dominating the gene library. The vast majority of sequences retrieved were not closely related to classified organisms or displayed relatively low levels of similarity with any known 16S rRNA gene sequences and thus represent organisms that constitute new taxa. Similarly, the majority of the recovered nosZ sequences were novel and only moderately related to known denitrifiers from the α- and β-Proteobacteria. In contrast, analysis of the amoA gene showed a remarkably simple ammonia-oxidizing community with the detected members almost exclusively affiliated with the Nitrosomonas oligotropha lineage. Major shifts in total bacteria and denitrifying community were detected and these were associated with change in the external carbon added for denitrification enhancement. In spite of this, the MBR was able to maintain a stable process performance during that period. These results significantly expand our knowledge of the biodiversity and population dynamics of microorganisms in MBRs for wastewater treatment.  相似文献   

14.
Nolwenn Prado 《Water research》2009,43(6):1549-1558
Effective aerobic/anoxic treatment of piggery manure wastewater was achieved in a real farm scale using a small piggery (72 pigs) with reuse of the treated water. The experimental procedure was followed for 9 months. Fresh manure (FM) is formed by daily flush on piggeries and biologically treated after centrifuge pre-treatment. For upgrade liquid/solid separation and pathogen retention in biological treatment, a membrane system was used with the aim of effluent reuse in flush. Despite an evolution of FM through time, centrifuge pre-treatment and bioreactor performances stayed at high level. An elimination of 86% of the suspended solids occurred through pre-treatment, and nitrogen and COD biological degradation remains at 90% all time long. Moreover, interestingly about half of the soluble part of phosphorus (20% of the global phosphorus content) was biologically removed via the recirculation between the anoxic and the aerobic tank which acted as an intermittent aerobic/anoxic sequence. A part of COD was proved not biodegradable and was accumulated via the reuse of the treated water for flushing purpose. This accumulation justifies washing of the biomass between two runs in purpose to enhance the treated water quality and also to meet the membrane tolerance. The membrane was proved reliable as far as the maintenance procedure was respected. Maintenance cleaning had to be operated as soon as the TransMembrane Pressure (TMP) achieved 50 mbar and curative washing was necessary if the TMP increased over 90 mbar or between 2 runs. The temperature was proved to influence both the bioactivity and the membrane fouling kinetic. Finally, it was demonstrated that the process was sustainable for long-term management of swine wastewater at semi-industrial scale.  相似文献   

15.
Three 6-L submerged anaerobic membrane bioreactors (SAnMBRs) with solids retention times (SRTs) of 30, 60 and infinite days were setup for treating synthetic low-strength wastewater at hydraulic retention times (HRTs) of 12, 10 and 8 h. Total COD removal efficiencies higher than 97% were achieved at all operating conditions. Maximum biogas production rate was 0.056 L CH4/g MLVSS d at an infinite SRT. A shorter HRT or longer SRT increased biogas production due to increased organic loading rate or enhanced dominancy of methanogenics. A decrease in HRT enhanced growth of biomass and accumulation of soluble microbial products (SMP), which accelerated membrane fouling. A drop in carbohydrate to protein ratio also inversely affected fouling. At 12-h HRT, the effect of SRT on biomass concentration in SAnMBRs was negligible and membrane fouling was controlled by variant surface modification due to different SMP compositions, i.e., higher carbohydrate and protein concentrations in SMP at longer SRT resulted in higher membrane fouling rate. At 8 and 10-h HRTs, infinite SRT in SAnMBR caused highest MLSS and SMP concentrations, which sped up particle deposition and biocake/biofilm development. At longer SRT, lower extracellular polymeric substances reduced flocculation of particulates and particle sizes, further aggravated membrane fouling.  相似文献   

16.
Zoh KD  Stenstrom MK 《Water research》2002,36(4):1018-1024
A bench-scale anoxic membrane bioreactor (MBR) system, consisting of a bioreactor coupled to a ceramic cross-flow ultrafiltration module, was evaluated to treat a synthetic wastewater containing alkaline hydrolysis byproducts (hydrolysates) of RDX. The wastewater was formulated the same as hydrolysis wastewater and consisted of acetate, formate and formaldehyde as carbon sources and nitrite and nitrate electron acceptors. The MBR system removed 80-90% of the carbon sources, and approximately 90% of the stoichiometric amount of nitrate, 60% of nitrite. The reactor was also operated over a range of transmembrane pressure, temperature, suspended solids concentration, and organic loading rate to maximize treatment efficiency and permeate flux. Increasing the transmembrane pressure and temperature did not improve flux significantly. Increasing mixed liquor volatile suspended solids (MLVSS) concentration in the bioreactor decreased the permeate flux significantly. The maximum volumetric organic loading rate was 0.72 kg COD/m3/day. The maximum food-to-mass ratio was 0.50 kg N/kg MLVSS/day and 1.82 kg COD/kg MLVSS/day. Membrane permeate was clear and essentially free of bacteria, as indicated by heterotrophic plate count. Permeate flux ranged between 0.15 and 2.0 m3/m2 day and was maintained by routine backwashing every three days. Backwashing with tap water containing chlorine bleach every fourth or fifth backwashing was able to restore membrane flux to its original value.  相似文献   

17.
Membrane bioreactors (MBRs) were compared with conventional activated sludge systems (CAS) for micropollutant degradation, in laboratory-scale spiking experiments with synthetic and real domestic wastewater. The target micropollutants were polar in nature and represented a broad range in biodegradability. The experimental data indicated that MBR treatment could significantly enhance removal of the micropollutants 1,6- and 2,7-naphthalene disulfonate (NDSA) and benzothiazole-2-sulfonate. 1,5-NDSA, EDTA and diclofenac were not removed in either the MBR or the CAS. The other compounds were equally well degraded in both systems. For 1,3-naphthalene disulfonate, the existence of a minimum threshold level for degradation could be demonstrated. Although MBRs could not always make a difference in the overall removal efficiencies achieved, they showed reduced lag phases for degradation and a stronger memory effect, which implies that they may respond quicker to variable influent concentrations. Finally, micropollutant removal also turned out to be less sensitive to system operational variables.  相似文献   

18.
Fouling is a major limitation for the application of membrane bioreactors (MBRs) in municipal wastewater treatment; the critical flux concept represents a valid tool for process optimisation in planning fouling control strategies. The paper presents the results obtained on a large pilot MBR equipped with a plate-and-frame ultrafiltration membrane. The experimental assessment of flux criticality was carried out by flux-stepping tests showing the positive impact of liquid temperature on the value of the critical threshold. The reliability of short-term tests was then verified over a long period by determining the time of sustainability, t(sust), of six different sub-critical fluxes ranging between 17 and 30Lm(-2)h(-1). An exponential fitting was observed in terms of fouling rate both before and after t(sust), though fouling after t(sust) is likely to be ascribed not only to cake formation. Finally, a new mathematical formulation was proposed according to the local flux approach to model the sub-critical TMP transients. The model involves both bound and free forms of EPS and, once experimentally calibrated, it provided a fair prediction of the TMP jump.  相似文献   

19.
20.
Oh YK  Lee KR  Ko KB  Yeom IT 《Water research》2007,41(12):2665-2671
A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号