首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used a scanning probe microscope equipped with a custom made diamond tip to study tribological properties of an inorganic–organic hybrid Si, O, H, and C coating produced by plasma enhanced chemical vapor deposition (PECVD) on siloxane/acrylic/polycarbonate multilayer substrates and on glass substrates. The micro indentation hardness and micro mar resistance were measured under different normal forces, and the critical loads for cracking, delamination, and chipping were evaluated. The effects of substrate, coating thickness, and interfacial adhesion on tribological properties of the coating/substrate systems are discussed. The results show that increasing coating thickness and strengthening interfacial adhesion can effectively inhibit cracking, delamination, and chipping of the coating/substrate systems under wear. Improving the physical properties of the PECVD coating and substrate, such as enhancing elastic recovery, reducing plasticity and brittleness, and matching the properties of coating and substrate better can improve the wear resistance of the systems further.  相似文献   

2.
To improve the mechanical and tribological properties of glass, an ultra-thin diamond-like-carbon (DLC) coating of 2.2 nm thick was deposited on the surface of glass, using the linear ion beam deposition technique. The coated glass showed significant improvement in scratch resistance against severe damage, such as cracking, delamination, and chipping. To understand the mechanism, an experimental study was carried out. It was found that the major contribution to the significantly improved scratch resistance attributable to the compressive stress, which was yielded during the deposition process and resides in the coating, as well as the top layer of glass substrate.  相似文献   

3.
基体表面粗糙度对磁控溅射TiN涂层界面结合力的影响   总被引:8,自引:1,他引:7  
利用球与平面的赫兹接触应力分布的经验修正公式∧[1],对磁控溅处理前的基体表面粗糙度对沉积层和基体的界面结合力进行了研究,并和其他涂层界面结合力的测量方法方法进行了比较。结果表明:基体表面粗糙度对界面结合力有很大影响,表面粗糙度的改善有利于TiN层/基体的界面结合力的提高,同时改善了TiN层的摩擦学性能。  相似文献   

4.
The unique features of DLC coatings in providing low friction and low wear and, at the same time, causing low wear to the counterface make them very attractive in industrial applications, in improving tribological performance of mechanical components on various substrates. In this study, composite DLC coatings have been deposited on sintered ferrous alloy, M42 tool steel, 2618 aluminium alloy, and 6063 aluminium extrusion substrates using the combined CFUBMS–PACVD technique. The effect of mechanical properties of substrate materials on tribological behaviour of the composite DLC coatings has been investigated at various loads on a ball-on-disk wear machine in dry air. A transition load was usually observed for coatings on the various substrates except for the aluminium extrusion; above the transition load the coating was completely destroyed via some spallation/fragmentation process after 2 h sliding, and the wear rate increased dramatically with further increase in load. The coating system on sintered ferrous alloy substrate exhibited the highest transition load among the four types of substrates studied. This is considered to have resulted from the combined effects of the lower elastic modulus of the porous sintered ferrous alloy substrate, which decreases the stress concentrations in the contact region, and the surface roughness and porosity, which enhance the bonding strength between the coating and the substrate under multi-contact conditions. The high elastic modulus of the tool steel substrate leads to tensile stress conditions in the sliding contact region and therefore makes coatings deposited on such a substrate more prone to breakdown/fragmentation, resulting in a transition load close to that for coatings on the soft 2618 aluminium alloy substrate. For coatings on the 6063 aluminium extrusion substrate, significant plastic deformation occurred in the substrate at loads above 1.5 N. However, despite the heavy deformation in the substrate, coatings on this substrate were not scraped off, as were coatings on the 2618 aluminium alloy substrate, even at a load as high as 20 N. The specific wear rate increased continuously with load, no apparent transition load being explicitly identifiable. This study shows that hard DLC coatings can be applied on both hard and soft substrates for improvement of the tribological behaviour of mechanical components.  相似文献   

5.
Jianwei Qi  Liping Wang  Fengyuan Yan  Qunji Xue 《Wear》2013,297(1-2):972-985
Combination of solid and liquid lubricants to meet emission or environmental requirements of future tribological systems while providing the levels of desired friction and wear performance have received considerable research attention in the near term. The aim of the present work was to investigate the tribological behavior of oil-lubricated (PAO, PFPE, SO, IL and MAC) DLC coated surfaces under the conditions without and with sand-dust particles. The effects of applied load, frequency, and sand-dust particles on the tribological performance of DLC coating were systemically studied. The analysis results showed that solid–liquid lubricating coatings including SO and IL exhibited excellent anti-friction (~0.026) but relative poor wear-resistance performances under the conditions without and with sand-dust environments. But for PFPE and PAO, they demonstrated the worst tribological behaviors with high friction coefficient and wear rates. The added sand-dust particles lead to the wear rates to the one order of magnitude large than that without sand-dust conditions for all the selected liquid lubricants. The viscosity, contact angle and work of adhesion played an important part in affecting the tribological performances. The lubrication regimes in Stribeck curve for the five kinds of liquid lubricants were affected obviously by the sand-dust particles in different way. The formed transfer films on the coating surface and pin have much influence on the tribological behavior and the transition between lubrication regimes.  相似文献   

6.
利用磁控溅射与磁过滤阴极真空电弧(MS/FCVA)复合沉积法,在不同偏压下在单晶Si基体上制备W-C-S-Mo四元复合薄膜;分析沉积偏压对薄膜纳米硬度、弹性模量和膜基结合力等力学性能的影响;在潮湿大气、真空环境下研究偏压对薄膜摩擦学性能的影响。结果表明,薄膜硬度、弹性模量和附着力随着沉积负偏压的增大呈现先增大后减小的趋势,在偏压-100 V时薄膜力学性能最好;负偏压-100 V下制备的W-C-S-Mo四元复合薄膜样品在潮湿大气和真空环境下均具有较好的摩擦学性能,拉曼测试发现,W-C-S-Mo复合薄膜在潮湿大气环境中的润滑作用主要由DLC提供,而在真空环境中薄膜中的软质相MoS2晶粒起润滑作用。  相似文献   

7.
Development in vapor deposition techniques over the last two decades has led to the introduction of many advanced coatings for metal-cutting tools. This paper examines the characteristics of multilayer Ti, TiN, and diamond-like carbon (DLC) coatings deposited on standard tool substrates at varying sputtering parameters and conditions, such as power density, partial pressure, substrate temperature, and reactive gases. The characteristics of films were examined using an X-ray diffractometer, Raman microscope, surface profilometer (to measure the thickness of the coating), Rockwell hardness tester (to test adhesion), and a micro hardness tester. The pin-on-disc test setup was used to find the coefficient of friction of the coatings. The results indicated that a graded multilayer coating showed better adhesion to the substrates. It was observed that higher target power density resulted in an increase of micro hardness and crystalline planes of coating. Lattice constant matching among layers of coating, proper substrate preparation, and a sequence of cleaning processes are the crucial factors for the enhancement of adhesion strength.  相似文献   

8.
Ronkainen  H.  Koskinen  J.  Varjus  S.  Holmberg  K. 《Tribology Letters》1999,6(2):63-73
Diamond-like carbon (DLC) coatings have shown excellent tribological properties in laboratory tests. The coatings have also been introduced to several practical applications. However, the functional reliability of the coatings is often weakened by adhesion and load-carrying capacity related problems. In this study the load-carrying capacity of the coating/substrate system has been evaluated. The DLC coatings were deposited on stainless steel, alumina and cemented carbide with two different deposition techniques: the tetrahedral amorphous carbon (ta-C) coatings were deposited by a pulsed vacuum arc discharge deposition method and the hydrogenated carbon (a-C:H) films by radio frequency (r.f.) plasma deposition method. The load-carrying capacity of the coated systems was evaluated using a scratch test, Rockwell C-indentation test and ball-on-disc test. The effect of substrate material, substrate hardness, coating type and coating thickness was studied. An increase in substrate hardness increased the load-carrying capacity for the coated systems, as expected. The two coating types exhibited different performance under load due to their different physical and mechanical properties. For the load-carrying capacity evaluations the ball-on-disc configuration was found to be most suitable. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Abstract

Multifunctional coatings, widely used in tribological applications, have their properties strongly influenced by the interaction of the system coating/substrate. The use of multilayered coatings has been pointed out as a solution for the problem of high internal stresses that can be generated in coated systems, in particular in the case of soft substrates. In multilayered coatings, a decrease in the stress gradient between substrate and coating improves adhesion. Moreover, the thickness of the coating has shown a strong influence on the tribological behaviour of the coated system. This paper, through widely used and efficient techniques, seeks to assess the influence of the thickness of different layers (DLC and CrN) on the response of a multifunctional coating. Si rich DLC and CrN coatings with different thicknesses were deposited on a steel substrate (AISI 1020) by Plasma Enhanced Magnetron Sputtering (PECVD). Scanning electron microscopy (SEM) and Raman spectroscopy (RS) were used in order to characterize the chemical composition and microstructure of the coatings. Instrumented indentation and scratch test techniques were used to measure hardness, elastic modulus, and adhesion of each layer. Critical loads were determined by visual analysis, using SEM in conjunction with the curves obtained in the scratch tests. The evaluation of the effect of the thicknesses of the layers allowed an optimised design of the multifunctional coated systems with improved durability.  相似文献   

10.
TiAlN涂层往复滑动的摩擦学性能研究   总被引:1,自引:0,他引:1  
为研究硬质合金表面沉积的TiA lN涂层的摩擦学行为,在不同介质(干态、乳化液、冷却油)条件和试验参数(法向载荷和位移幅值)下,进行了往复滑动摩擦磨损试验。在动力学分析基础上,结合光学显微镜(OM)、激光共焦扫描显微镜(LCSM)、扫描电子显微镜(SEM)和电子能谱(EDS)等微观分析手段对摩擦学性能进行了研究。结果显示:在同样条件下,涂层在试验初期的摩擦因数较小;法向载荷增大,涂层的摩擦因数降低,而位移幅值对涂层摩擦因数的影响不明显;基体的磨损机制主要为磨粒磨损,而涂层剥落是剥层和氧化磨损共同作用的结果;在润滑条件下,涂层的摩擦学性能得到了很大的改善,使涂层寿命得到显著延长,其中冷却油的效果最明显。  相似文献   

11.
Hydrogenated diamond-like carbon (DLC) coatings were deposited using unbalanced magnetron sputtering (UBM) equipment with different hardnesses. Effects of coating hardness on tribological properties were investigated with tribo-tests under water lubrication. Results showed that the wear volume increased rapidly during the initial running-in process, but remained nearly constant after the running-in process. The ball wear rate increased as the hardness of the DLC coating increased when metals (stainless steel and brass) were used as counter parts. In contrast, the UHMWPE ball wear rate was independent of the DLC hardness. TEM analysis and nano-indentation measurements were conducted of the transfer layer on the counter bodies’ contact surfaces. The transfer layer consisted mainly of Fe, O and C. The low friction of DLC coating is attributed to this low hardness transfer layer, which acts as a boundary-lubricating layer with low shear strength.  相似文献   

12.
The aim of this study is to probe the influence of water vapor environment on the microtribological properties of a forestlike vertically aligned carbon nanotube (VACNT) film, deposited on a silicon (001) substrate by chemical vapor deposition. Tribological experiments were performed using a gold tip under relative humidity varying from 0 to 100%. Very low adhesion forces and high friction coefficients of 0.6–1.3 resulted. The adhesion and friction forces were independent of humidity, due probably to the high hydrophobicity of VACNT. These tribological characteristics were compared to those of a diamond like carbon (DLC) sample.  相似文献   

13.
Fretting corrosion damages are commonly observed when two metallic bodies, which are in contact with each other, are subjected to oscillatory motions of low amplitude. Such kind of degradation mode is often responsible for limited durability of aeronautical joints. In the present paper, a multifunctional duplex coating based on Si–C–N and diamond-like carbon (DLC) materials, combining corrosion resistance and good tribological properties is described. Amorphous hydrogenated SiC, SiCN, SiC/DLC and SiCN/DLC were deposited on steel substrates by a plasma assisted chemical vapour deposition (PACVD) technique, using tetramethylsilane (TMS), ammonia (NH3) or acetylene (C2H2) as gas precursors. Nitrogen incorporation has shown to improve the corrosion protection ability of SiC coatings. The corrosion behaviour and the tribological performance in aqueous media of SiCN/DLC coating have therefore been investigated. A test rig has been designed to validate the fretting resistance of this duplex coating for aeronautic applications. It was found that the combination of a SiCN-based PACVD sublayer with a DLC topcoat could provide an enhanced solution to withstand both fretting and corrosion.  相似文献   

14.
Textured diamond-like carbon (DLC) films with the pattern of parallel grooves were developed by depositing DLC on textured stainless substrates in a PVD system. The texturing effects on tribological performance of DLC in water-lubricated condition were investigated. Results show that introducing specific patterns into DLC film not only retains the low friction coefficients, but also dramatically extends coating lifetime through affecting the coating delamination behavior and graphitization process during friction. Besides the adherence difference induced by surface texturing which could influence the delamination, another possible mechanism, “buffer stripes”, which is characteristic of the lateral soft/hard periodical structure, was proposed by us based on the Micro-Raman spectroscopy and nanoindentation analysis. Additionally, a much lower graphitization for textured DLC during friction may also be responsible for the improved wear resistance.  相似文献   

15.
测试了 CoCrMo合金表面沉积类金刚石薄膜与CoCrMo在水溶液润滑下的摩擦磨损行为。结果表明:摩擦副在不同浓度牛血清白蛋白溶液润滑下的平均摩擦因数均在0.10左右,CoCrMo合金销磨损量最小值为1.69×10-5 mm3;相同条件下,生理盐水溶液润滑的磨损量为1.38×10-5 mm3,且销表面有转移膜生成;牛血清白蛋白溶液润滑时,界面蛋白吸附层屏蔽了转移膜的形成。根据结果可知,转移膜的形成经历了磨屑附着、连续转移、局部脱落的过程。  相似文献   

16.
Increasing environmental awareness and demanding low energy consumption are of the top priorities for future vehicles manufacturing companies. This can be achieved by reducing wear and friction of engine components, so that its efficiency and lifetime can be increased. Surface treatments and coatings contribute to a better lubrication with oils and can participate significantly in achieving these goals. In this paper, diamond-like carbon (DLC) coating has been incorporated to the vehicle piston rings with different RF powers using magnetron sputtering method. The tribological properties like wear and coefficient of friction have been analysed using Pin-on-Disk tribometer. Micro-hardness and nano-hardness of the coated piston rings were characterized by micro-indentor and nano-indentation processes. Surface microstructure and elemental compositions were observed using Scanning Electron Microscopy. Experimental results demonstrated that the DLC coating shows lower wear and friction under similar operating conditions as compared to uncoated piston rings. Thus, usage of DLC coating has enhanced the engine life time. Silicon interlayer has also been applied between nitrided piston rings and DLC layer in order to have better coating adhesion. The properties of the interlayer are not studied but usage of it is found to protect DLC coating from delamination.  相似文献   

17.
Thin film, solid lubricating WSe x coatings were deposited at room temperature on a steel substrate with a titanium underlayer by pulsed laser deposition (PLD). Two modes of PLD were investigated, i.e., the PLD under vacuum conditions and the PLD in a buffer gas (helium) at a pressure of 2–10 Pa. Gas was used to slow down the laser-induced atomic flux and to modify thus the conditions of the coatings growth. At a pressure ~8 Pa, gas reduced the effectiveness of Se preferential sputtering by atomic flux, which resulted in the formation of coatings with a stoichiometric composition (x ≈ 2). The structure of the coatings was characterized by a greater degree of the perfect organization of atoms in the nanophase laminar packaging and reduced internal stresses. Studies by the ball-on-disk tests in humid air showed that the modification of the structure and the chemical composition of the coatings had a significant effect on their tribological behavior. Vacuum-deposited coatings fractured relatively quickly due to the cracking and delamination from the substrate surface along the sliding track. When the coatings deposited in helium were tested, wear by layer-by-layer removal was dominant, so the adhesive fracture was only observed in the local parts of the track. The simulation of the laser vapor deposition in the vacuum and in the buffer gas was performed. Likely factors that improve the tribological properties of the coating during deposition in the buffer gas were disclosed.  相似文献   

18.
改善CVD金刚石薄膜涂层刀具性能的工艺研究   总被引:1,自引:0,他引:1  
用热丝CVD法,以丙酮和氢气为碳源,在WC-Co硬质合金衬底上沉积金刚石薄膜,在分析了工艺条件(衬底温度、碳源浓度、反应压力)对金刚石薄膜性能的影响的基础上,提出了分步沉积法改善金刚石薄膜涂层刀具性能的新工艺.结果表明,合理控制工艺条件的新工艺对涂层薄膜质量、形貌和粗糙度、薄膜与衬底间的附着力、刀具的耐用度及切削性能有显著影响,对获取实用化的在硬质合金刀具基体上沉积高附着强度、低粗糙度金刚石薄膜的新技术具有重要的意义.  相似文献   

19.
Abstract

A plasma enhanced chemical vapour deposition (PECVD) amorphous carbon coating was deposited onto 100Cr6 steel substrates having varying degrees of surface roughness. The samples were subsequently evaluated to determine the correlation between substrate roughness and coating performance. The steel substrates were prepared before coating deposition to attain five different levels of roughness: (a) ground; (b) superfinished (SF); (c) polished to 1000 grit; (d) polished to 220 grit and (e) polished to a 1 μm diamond finish. The aim of the investigation was to determine the degree of finish required for good tribological performance and coating adhesion. The mechanical and tribological properties of the samples were assessed by nanoindentation, ramped load scratch testing, and pin on disk wear testing. Nanoindentation testing was used to determine the hardness of the samples and the relative contributions to the system hardness from the substrate and coating were separated using the model of Korsunsky et al. Nanoindentation testing showed that the coating hardness (when separated from the system hardness) was lower for the samples with the SF substrate than the others: the reasons for this are discussed in the light of Raman measurements on the fractions of diamond-like and graphite-like bonding in the coatings. Ramped load scratch testing was used to determine coating adhesion and the scratch test failure mode. With the exception of the samples with the ground substrate finish, studies of the friction coefficient plots during scratch testing showed little variation between the samples, and SEM imaging revealed a common failure mode of severe spallation at the scratch track border. The samples with the ground substrate showed differences in response between scratches parallel and perpendicular to the grinding direction, with scratches parallel to the grinding direction showing more severe spallation. The average critical load to failure, as determined by the point of first failure in the scanning electron microscope, was lower for the coatings on the SF substrate than the coatings on the 220 grit, 1000 grit and 1 micron finished substrates. The critical load to failure for the samples with ground substrates was lower than the other substrate surface finishes. Pin on disk wear testing of the samples against a steel ball revealed that the major effect of the varying substrate roughness was on the wear of the counterface, with rougher substrate finishes generally resulting in higher wear rates of the counterface, although the smoothest substrate finish, the micrometre finish, also resulted in higher wear. The sample whose substrate was superfinished gave least wear of the counterface and this was therefore the optimum finish for the samples when considering their performance in a tribological couple.  相似文献   

20.
为了解决类金刚石(DLC)薄膜与金属基材间的界面结合强度问题,本研究采用直流等离子体增强化学气相沉积(DC-PECVD)技术,以等时长、不同偏压条件在45钢基材上沉积复合DLC薄膜.采用扫描电镜、原子力显微镜观察薄膜形貌;采用拉曼光谱仪分析薄膜成分;采用涂层附着力自动划痕仪测定膜基结合强度.结果表明:制备偏压从-600...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号