共查询到20条相似文献,搜索用时 0 毫秒
1.
本文研究了玻纤和矿纤分别掺人钢渣、水泥复合胶凝材料时对胶砂强度和膨胀性的影响.结果表明随着钢渣掺量的提高,各龄期胶砂强度下降;随着纤维掺量的提高,胶砂试件各龄期强度下降,相比纤维掺量为0时,玻纤掺量为0.1%、0.5%时,28 d抗压强度分别提高2.36%、降低10.6%,矿纤掺量为0.1%、0.5%时,28 d抗压强度分别提高7.4%、降低17.2%.沸煮和压蒸试验结果表明,钢渣与水泥配比相同时,玻纤掺量高的试件其压蒸膨胀率低;掺入质量分数0.3%的6 mm玻纤时,试件压蒸膨胀率比纤维掺量为0时降低18.87%;掺入混合玻纤的试件其压蒸膨胀率较单掺时低.SEM显示,随着水化的进行,纤维表面生长C-S-H凝胶以及Ca(OH)2晶体,纤维与基体的粘结程度提高,矿纤与基体的表面粘结程度较玻纤高. 相似文献
2.
3.
以鞍钢-0.088 mm热闷法钢渣和鞍钢高炉矿渣为胶凝材料的主要组分,以鞍钢0.088~19 mm热闷法钢渣为骨料,制备出了具有较高强度的人工鱼礁用钢渣混凝土。通过X射线衍射分析、场发射扫描电镜分析、差热分析和红外吸收光谱分析对胶凝材料的水化特性进行研究,结果表明:该胶凝材料在水化初期生成大量低碱度水化硅酸钙凝胶和少量钙矾石,水化硅酸钙凝胶是混凝土早期强度的主要来源;而随着水化进程的延续,水化硅酸钙凝胶的继续发展和不断增多、长大的钙矾石对体系空隙的充填则共同使混凝土的后期强度得到进一步的提高。 相似文献
4.
钢渣粒度分布对钢渣水泥胶凝性能的影响 总被引:1,自引:0,他引:1
为了给钢渣水泥用钢渣粉的颗粒级配优化提供指导,研究了不同研磨时间下钢渣粉的粒度特性以及相应钢渣水泥的胶凝性能,并运用灰色关联分析方法计算了钢渣粉各粒级与钢渣水泥胶砂强度的关联度。结果表明:随着研磨时间的延长,钢渣的比表面积增大,活性增强,从而使钢渣水泥胶砂的抗折强度和抗压强度都得到提高。钢渣粉中小于20 μm的颗粒、特别是10~20 μm粒级对钢渣水泥胶砂的强度起促进作用,而大于20 μm的颗粒对钢渣水泥胶砂的强度起阻碍作用,因此要使钢渣水泥具有更好的胶凝性能,应设法提高-20 μm尤其是10~20 μm粒级的含量,同时减少+20 μm粒级的含量。 相似文献
5.
为了提高钢渣和矿渣的高附加值利用率以及钢渣在胶凝材料中的掺量,研究了钢渣与矿渣掺量、质量比和胶凝活性激发方式对复合胶凝材料抗折、抗压强度的影响,并采用X射线衍射、扫描电镜和热重分析等检测手段探究了钢渣—矿渣复合胶凝材料的水化机理。结果表明:钢渣矿渣掺量为80%、钢渣矿渣质量比为5∶5、钢渣粉磨时间为80 min(比表面积为509 m2/kg)时,钢渣—矿渣复合胶凝材料的28 d抗折强度为7.3 MPa、抗压强度为31.3MPa;选取Na OH、Na2CO3、Na2SO4和水玻璃为激发剂对胶凝材料活性进行激发,只有水玻璃提高了复合胶凝材料的活性,且当水玻璃模数为2、Na2O当量为4%时,其28 d抗折强度为8.4 MPa、抗压强度为43.0 MPa。分析水玻璃激发胶凝材料的水化产物发现:其微观形貌紧实致密,生成的C—S—H凝胶、Ca(OH)2和Aft相互交织,提高了胶凝材料的强度。 相似文献
6.
钢渣中含有C_3S、C_2S胶凝活性物质,因此经粉磨后,具有用作胶凝物质掺合料的潜质。但是钢渣的安定性差是制约其利用的最重要限制因素之一。本文分别采用沸煮和压蒸方法研究钢渣的比表面积对钢渣-水泥复合胶凝材料净浆安定性的影响;用灰色关联度分析法研究钢渣掺量与比表面积对钢渣-水泥复合胶凝材料净浆安定性的影响程度;通过SEM分析钢渣不同比表面积时,钢渣-水泥复合胶凝材料净浆的微观形貌。研究结果表明,钢渣-水泥复合胶凝材料净浆可以通过提高钢渣的比表面积改善其安定性。钢渣掺量10%时,相较于钢渣比表面积454.99 m~2/kg的钢渣-水泥复合胶凝材料净浆,钢渣比表面积为598.43 m~2·kg的钢渣-水泥复合胶凝材料净浆沸煮膨胀率降低了72.14%,压蒸膨胀率降低了51.40%。灰色关联分析得出与比表面积相比,钢渣掺量对钢渣-水泥复合胶凝材料净浆膨胀率的影响更大。限制钢渣的掺量仍是预防钢渣-水泥复合胶凝材料体积膨胀的主要方法。SEM微观结构分析表明,随着钢渣比表面积的增加,钢渣-水泥复合胶凝材料净浆逐渐趋于致密,此结论与膨胀率评价结果一致。 相似文献
7.
8.
以工业废渣镍渣和钢渣为主要原料制备碱激发胶凝材料。研究钢渣掺量对镍渣碱激发胶凝材料抗压强度的影响,结合X射线衍射(XRD)和扫描电镜(SEM)等测试方法,对碱激发反应产物的微观性能进行分析。结果表明,随着钢渣掺量的增大,镍渣碱激发胶凝材料的抗压强度逐渐增大。钢渣掺量为50%时,50℃养护7 d的风冷镍渣碱激发胶凝材料和水淬镍渣碱激发胶凝材料的抗压强度分别较未掺钢渣试样提高279.2%和73.6%。掺入钢渣使得体系碱度增大,有效促进了镍渣碱激发反应过程的进行;反应产物相互填充,体系结构的致密性改善,有利于提高胶凝材料抗压强度。 相似文献
9.
10.
11.
以钢渣作为研究对象,采用水玻璃、氢氧化钠与氢氧化钙三元复合活化剂,制备碱钢渣胶凝材料。基于均匀设计和多元非线性回归法研究了各因素对碱钢渣胶凝材料力学性能的影响。结果表明,各因素对性能影响的主次顺序为:3 d时钢渣用量>氢氧化钠用量>水玻璃用量>氢氧化钙用量,7 d时钢渣用量>水玻璃用量>氢氧化钠用量>氢氧化钙用量,28 d时钢渣用量>水玻璃用量>氢氧化钙用量>氢氧化钠用量;28 d碱钢渣胶凝材料的优化制备方案为:钢渣用量为225 g,水玻璃用量为22.5 g,氢氧化钠用量为9.0 g,氢氧化钙用量为13.2 g;优化制备模型选择正确,其相对误差仅为2.19%。 相似文献
12.
通过控制不同粉磨时间,控制磨细钢渣的比表面积和颗粒度分布,研究了与磨细石英砂凝结时间对比,不同颗粒度分布的钢渣的活性指数,以及配制成复合胶凝材料中的凝结时间和抗压强度,并进行了卧辊磨大磨实验,结果表明:(1)钢渣使复合胶凝材料早期结构发育缓慢,随着钢渣比表面积的增大,其与水分的接触面积增大,导致复合胶凝材料的凝结时间显著的延长,其早期(1~3d)的结构发育缓慢;(2)卧辊磨与实验室结果差距较大,可能原因为卧辊磨配套选粉机钢渣粉粒度分布窄;(3)将钢渣粉的比表控制在300 m2/kg左右,有利于钢渣磨机的台时产量提高,降低钢渣粉的生产成本,增大钢渣粉在水泥中的掺量. 相似文献
13.
由于钢渣具有难磨、活性低、体积膨胀性等特性,目前尚未得到充分利用。为提高钢渣利用率,以某铁矿选矿全细尾砂为骨料,利用矿山周边的钢渣、矿渣、脱硫石膏等固废资源协同开发新型低成本充填胶凝材料,并进一步优化配比。首先,对试验材料进行物化分析,在此基础上进行胶凝材料配比试验及配比优化试验,确定充填胶凝材料配比;其次,进行充填体胶砂强度验证试验和料浆稳定性测试,以分析强度、泌水率和分层度的影响规律;最后,进行二次多项式逐步回归分析,并以充填成本为优化目标建立料浆配比优化函数关系式,得到细尾砂骨料钢渣基复合充填胶凝材料优化配比为钢渣粉∶脱硫石膏∶矿渣粉=4∶1∶5,当料浆浓度为64%、胶砂比为1∶5时,其胶结体强度远高于PO.42.5水泥,成本低于PO.42.5水泥约35%。研究成果可为冶金矿山绿色清洁生产提供新的途径。 相似文献
14.
15.
16.
为探究攀钢转炉钢渣作为水泥掺加料、实现钢渣高效资源化利用的可行性,以攀钢转炉钢渣和四川峨胜水泥熟料为原料,研究了不同粒度、不同掺量钢渣细粉对水泥胶凝性能的影响。结果表明:在钢渣细粉掺加量一定的情况下,掺入的钢渣细粉粒度越细,水泥的标准稠度需水量越大、初凝和终凝时间越长、水泥胶砂的强度和活性指数越高;在钢渣细粉粒度一定的情况下,水泥胶砂的强度随着钢渣细粉掺入量的增加而降低,当钢渣细粉掺入量超过钢渣复合水泥质量分数的30%时,水泥胶砂的强度将大幅下降;D50=6.21 μm和D50=3.17 μm的钢渣细粉按30%取代水泥时,钢渣复合水泥胶砂的强度和安定性均满足国家P.S.A 32.5级水泥标准要求。 相似文献
17.
纤维增韧补强磷石膏基胶凝材料 总被引:2,自引:0,他引:2
在磷石膏-矿渣基胶凝材料中加入纤维对胶凝材料增韧补强.用不同龄期样品的抗冲击功、抗折强度、抗压强度、孔隙率和受压样品外貌及断口形貌分析等表征纤维对胶凝材料的增韧补强效果.结果表明:BF型化纤可显著对磷石膏基胶凝材料增韧,BM型玻纤可显著对磷石膏基胶凝材料补强.在20℃(湿度大于90%)条件下,BF型化纤掺量为0.7%时,样品28 d的抗冲击功和抗折强度分别较净浆提高了389.5%和50.4%;BM型玻纤掺量在1.0%时28d抗压强度较同龄期的净浆提高了10.4%;BF型化纤穿插于硬化体内部,具有桥联搭接作用;BM型玻纤降低孔隙率. 相似文献
18.
19.
20.
为资源化利用钢渣,以钢渣、粉煤灰和粘土为主要原料制备高强陶粒。试验研究表明,随钢渣的质量分数增加,钢渣高强陶粒的堆积密度增加、吸水率降低、筒压强度提高。当钢渣质量分数在10~20%时,可制得堆积密度800~1200 kg/m~3、筒压强度7~13 MPa的高强陶粒。SEM-EDS分析发现,陶粒内部气孔多、分布均匀、少连通,这种结构有利于堆积密度的降低。X射线衍射(XRD)分析表明,陶粒中主要晶体为透辉石(CaO·MgO·2SiO_2),石英(α-SiO_2)、钙铁辉石(CaO·FeO·2SiO_2)和钙长石(CaO·Al_2O_3·2SiO_2),这些晶体的存在有助于钢渣陶粒强度的提高。 相似文献