首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple and mild wet-chemical approach was developed for the synthesis of one-dimensional (1D) In(OH)3 nanostructures. By calcining the 1D In(OH)3 nanocrystals in air at 250 °C, 1D In2O3 nanocrystals with the same morphology were obtained. TEM results show that both 1D In(OH)3 and 1D In2O3 are composed of uniform nanotube bundles. SAED and XRD patterns indicate that 1D In(OH)3 and 1D In2O3 nanostructures are single crystalline and possess the same bcc crystalline structure as the bulk In(OH)3 and In2O3, respectively. TGA/DTA analyses of the precursor In(OH)3 and the final product In2O3 confirm the existence of CTAB molecules, and its content is about 6%. The optical absorption band edge of 1D In2O3 exhibits an evident blueshift with respect to that of the commercial In2O3 powders, which is caused by the increasing energy gap resulted from decreasing the grain size. A relatively strong and broad purple-blue emission band centered at 440 nm was observed in the room temperature PL spectrum of 1D In2O3 nanotube bundles, which was mainly attributed to the existence of the oxygen vacancies.  相似文献   

2.
A series of V2O5-TiO2 aerogel catalysts were prepared by the sol-gel method with subsequent supercritical drying with CO2. The main variables in the sol-gel method were the amounts of V2O5 and when the vanadium precursor was introduced. V2O5-TiO2 xerogel and V2O5/TiO2 (P-25) were also prepared for comparison. The V2O5-TiO2 aerogel catalysts showed much higher surface areas and total pore volumes than V2O5-TiO2 xerogel and impregnated V2O5/TiO2 (P-25) catalysts. The catalysts were characterized by N2 physisorption, X-ray diffraction (XRD), FT-Raman spectroscopy, temperature-programmed reduction with H2 (H2-TPR), and temperature-programmed desorption of ammonia (NH3-TPD). The selective catalytic reduction of NOx with ammonia in the presence of excess O2 was studied over these catalysts. Among various V2O5-TiO2 catalysts, V2O5 supported on aerogel TiO2 showed a wide temperature window exhibiting high NOx conversions. This superior catalytic activity is closely related to the large amounts of strong acidic sites as well as the surface vanadium species with characteristics such as easy reducibility and monomeric and polymeric vanadia surface species. This work was presented at the 7 th Korea-China Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

3.
This study investigated the removal of ammonia in wastewater by an electrochemical method using titanium electrodes coated with ruthenium and iridium (RuO2–IrO2–TiO2/Ti) with low chlorine evolution over-voltage. The effects of operating parameters, including chloride ion concentration, current density and initial pH, were also investigated. The results were evaluated primarily by considering the efficiency of the elimination of NH4+-N. The removal of ammonia by electrochemical oxidation mainly resulted from the indirect oxidation effect of chlorine/hypochlorite produced during electrolysis. The direct anodic oxidation efficiency of ammonia was less than 5%, and the current efficiency was less than 10%. The ammonia removal followed pseudo-first-order kinetics. The electrochemical process can be applied successfully as a final polishing step, or as an alternative method to biological nitrification. The process seems to be most beneficial for small coastal cities  相似文献   

4.
PSA [poly-(styrene-methyl acrylic acid)] latex particle has been taken into account as template material in SiO2 hollow spheres preparation. TiO2-doped SiO2 hollow spheres were obtained by using the appropriate amount of Ti(SO4)2 solution on SiO2 hollow spheres. The photodecomposition of the MB (methylene blue) was evaluated on these TiO2-doped SiO2 hollow spheres under UV light irradiation. The catalyst samples were characterized by XRD, UV-DRS, SEM and BET. A TiO2-doped SiO2 hollow sphere has shown higher surface area in comparison with pure TiO2 hollow spheres. The 40 wt% TiO2-doped SiO2 hollow sphere has been found as the most active catalyst compared with the others in the process of photodecomposition of MB (methylene blue). The BET surface area of this sample was found to be 377.6 m2g−1. The photodegradation rate of MB using the TiO2-doped SiO2 catalyst was much higher than that of pure TiO2 hollow spheres.  相似文献   

5.
The in situ atomic force microscopy and the electrochemical studies on electropolymerization of the o-methoxyaniline in the 0.0-0.8 V versus NHE range of the electrode potential are described. It is proved that in the 0.0-0.3 V versus NHE a redox process takes place, resulting in the formation of poly(o-methoxyaniline) in its reduced form, leucoemeraldine. The different morphologies are exhibited by poly(o-methoxyaniline) under different polymerization conditions. The microscopic results show that with the increase of the monomer concentration in the bulk of electrolyte solution the globular morphology, related to the coil like molecular structure, is replaced by the fibrilar one, related to the opened-up, more conductive extended coil structure. It is shown that oxidation of a leucoemeraldine state of polymer to its emeraldine state results in the change of the morphology from the chain like structure to the massive fibrilar like structure. The reduction of oxidized polymer results in its irreversible fragmentation.  相似文献   

6.
Mehdi Jaymand 《Polymer》2011,52(21):4760-4769
This paper describes the synthesis and characterization of novel type poly (4-chloromethyl styrene-graft-4-vinylpyridine)/TiO2 nanocomposite. Firstly, poly (4-chloromethyl styrene)/TiO2 nanocomposite was synthesized by in situ free radical polymerizing of 4-chloromethyl styrene monomers in the presence of 3-(trimethoxysilyl) propylmethacrylate (MPS) modified nano-TiO2. Thereafter, 1-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO-OH) was synthesized by the reduction of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO). This functional nitroxyl compound was covalently attached to the poly (4-chloromethyl styrene)/TiO2 with replacement of chlorine atoms in the poly (4-chloromethyl styrene) chains. The controlled graft copolymerization of 4-vinylpyridine was initiated by poly (4-chloromethyl styrene)/TiO2 nanocomposite carrying TEMPO groups as a macroinitiators. The coupling of TEMPO with poly (4-chloromethyl styrene)/TiO2 was verified using 1H nuclear magnetic resonance (NMR) spectroscopy. The obtained nanocomposites were studied using transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectra, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and the optical properties of the nanocomposites were studied using ultraviolet-visible (UV-Vis) spectroscopy.  相似文献   

7.
For high solar conversion efficiency of dye-sensitized solar cells [DSSCs], TiO2 nanofiber [TN] and Ag-doped TiO2 nanofiber [ATN] have been extended to be included in TiO2 films to increase the amount of dye loading for a higher short-circuit current. The ATN was used on affected DSSCs to increase the open circuit voltage. This process had enhanced the exit in dye molecules which were rapidly split into electrons, and the DSSCs with ATN stop the recombination of the electronic process. The conversion efficiency of TiO2 photoelectrode-based DSSCs was 4.74%; it was increased to 6.13% after adding 5 wt.% ATN into TiO2 films. The electron lifetime of DSSCs with ATN increased from 0.29 to 0.34 s and that electron recombination was reduced.  相似文献   

8.
TiO2 thin and thick films promoted with platinum and organic sensitizers including novel perylene diimide dyes (PDI) were prepared and tested for carbon dioxide reduction with water under visible light. TiO2 films were prepared by a dip coating sol–gel technique. Pt was incorporated on TiO2 surface by wet impregnation [Pt(on).TiO2], or in the TiO2 film [Pt(in).TiO2] by adding the precursor in the sol. When tris (2,2′-bipyridyl) ruthenium(II) chloride hexahydrate was used as sensitizer, in addition to visible light activity towards methane production, H2 evolution was also observed. Perylene diimide derivatives used in this study have shown light harvesting capability similar to the tris (2,2′-bipyridyl) ruthenium(II) chloride hexahydrate.  相似文献   

9.
CO impedes the low temperature (<170 °C) oxidation of C3H6 on supported Pt. Supported Au catalysts are very effective in the removal of CO by oxidation, although it has little propene oxidation activity under these conditions. Addition of Au/TiO2 to Pt/Al2O3 either as a physical mixture or as a pre-catalyst removes the CO and lowers the light-off temperature (T 50) for C3H6 oxidation compared with Pt catalyst alone by ~54 °C in a feed of 1% CO, 400 ppm C3H6, 14% O2, 2% H2O.  相似文献   

10.
Yonghui Li  Jun Li 《Polymer》2011,52(11):2367-6055
Bionanocomposites from biopolymers and inorganic nanoparticles are of great interest for packaging materials due to their enhanced physical, thermal, mechanical, and processing characteristics. In this study, poly(lactic acid) (PLA) nanocomposites with covalent bonding between TiO2 nanowire surface and PLA chains were synthesized through in situ melt polycondensation. Molecular weight, structure, morphology, and thermal properties were characterized. Fourier transform infrared spectroscopy confirmed that PLA chains were covalently grafted onto TiO2 nanowire surface. Transmission electron microscopy images also revealed clearly a third phase presence on the nanowires after the grafting process. Those grafted PLA chains exhibited significantly increased glass transition temperature and thermal stability, compared with pure PLA. The weight-average molecular weight of PLA/2% TiO2 nanowire bulk nanocomposites increased by 66% compared with that of pure PLA. The electron microscopy results showed that strong interfacial interaction and homogeneous distribution were achieved between inorganic nanowires and organic PLA matrix in the bulk nanocomposites. The PLA matrix in bulk nanocomposites exhibited elevated glass transition temperature and decreased crystallization ability as the TiO2 nanowire concentrations were increased from 0 to 2%.  相似文献   

11.
A lithium insertion material having the composition LiNi0.3Co0.3Mn0.3Fe0.1O2 was synthesized by simple sol-gel method. The structural and electrochemical properties of the sample were investigated using X-ray diffraction spectroscopy (XRD) and the galvanostatic charge-discharge method. Rietvelt analysis of the XRD patterns shows that this compound can be classified as α-NaFeO2 structure type (R3m; a=2.8689(5) Å and 14.296(5) Å in hexagonal setting). Rietvelt fitting shows that a relatively large amount of Fe and Ni ion occupy the Li layer (3a site) and a relatively large amount of Li occupies the transition metal layer (3b site). LiNi0.3Co0.3Mn0.3Fe0.1O2 when cycled in the voltage range 4.3–2.8 V gives an initial discharge capacity of 120 mAh/g, and stable cycling performance. LiNi0.3Co0.3Mn0.3Fe0.1O2 in the voltage range 2.8–4.5 V has a discharge capacity of 140 mAh/g, and exhibits a significant loss in capacity during cycling. Ex-situ XRD measurements were performed to study the structure changes of the samples after cycling between 2.8–4.3 V and 2.8–4.5 V for 20 cycles. The XRD and electrochemical results suggested that cation mixing in this layered structure oxide could be causing degradation of the cell capacity.  相似文献   

12.
The electrochemical formation of TiO2-polyaniline (PANI) composite layers was studied by anodic polymerization of aniline in the presence of TiO2 nanoparticles. The composite layers were investigated for their electrochemical, photoelectrochemical, and surface morphological characteristics. It was found that thick composite layers showed no photoresponse, whereas thin layers, prepared by a few potentiodynamic scans, have small photocurrents almost independent of the layer thickness. Due to the small photocurrents of the composite single-layers, bi-layered structures consisting of a first pristine PANI layer followed by an outer TiO2-PANI composite layer were also studied. The bi-layered structures were found to have up to threefold larger photocurrents than the composite single layers. The TiO2-PANI composite layers were additionally modified by deposition of platinum particles using galvanostatic electroreduction or photoreduction in the presence of hexachloroplatinate anions.  相似文献   

13.
TiO2 nanotubes promoted with Pt metal were prepared and tested to be the photocatalytic dehydrogenation catalyst in neat ethanol for producing H2 gas (C2H5OHC3CHO +H2). It was found that the ability to produce H2, the liquid phase product distribution and the catlyst stability of these promoted nano catalysts all depended on the Pt loading and catalyst preparation procedure. These Pt/TiO2 catalysts with TiO2 nanotubes washed with diluted H2SO4 solution produced 1, 2-diethoxy ethane (acetal) as the major liquid phase product, while over those washed with diluted HCl solution or H2O, acetaldehyde was the major liquid phase product.  相似文献   

14.
Vanadium oxide supported on zirconia modified with WO3 was prepared by adding Zr(OH)4 powder into a mixed aqueous solution of ammonium metavanadate and ammonium metatungstate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed by using FTIR, Raman, and XRD. In the case of calcination temperature at 773 K, for samples containing low loading V2O5 below 18 wt%, vanadium oxide was in a highly dispersed state, while for samples containing high loading V2O5 equal to or above 18 wt%, vanadium oxide was well crystallized due to the high V2O5 loading on the surface of ZrO2. The ZrV2O7 compound was formed through the reaction of V2O5 and ZrO2 at 873 K, and the compound decomposed into V2O5 and ZrO2 at 1,073 K, these results were confirmed by FTIR and XRD. Catalytic tests for 2-propanol dehydration and cumene dealkylation have shown that the addition of WO3 to V2O5/ZrO2 enhanced both catalytic activity and acidity of V2O5-WO3/ZrO2 catalysts. The variations in catalytic activities for both reactions are roughly correlated with the changes of acidity.  相似文献   

15.
The electropolymerization of benzotriazole on an Au electrode was investigated via cyclic voltammetry and chronoamperometry in a room temperature ionic liquid medium, 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6) containing glacial acetic acid. The chronoamperometric investigation revealed that the instantaneous nucleation predominated the potentiostatic electropolymerization of benzotriazole at the oxidation peak potential. Scanning electron microscopy indicated that the polymer film was compact and relatively smooth and infrared spectroscopy suggested the polymer chains were formed mainly via coupling of the unsaturated nitrogen atoms. The polymer was found to be highly electroactive, showing a quasi-reversible and stable pair of redox peaks centering at 0.9 V versus Ag/AgCl in 0.1 mol L−1 H2SO4.  相似文献   

16.
In this contribution we describe the use of heterogeneous catalysts for the liquid-phase self-metathesis of 1-octene in supercritical CO2. Our work aims at addressing the mass-transfer problems associated with such reaction systems. By coupling a heterogeneous supported Re2O7 catalyst with the use of scCO2, the self-metathesis of 1-octene takes place by and large much more rapidly than in traditional solvent media, and furthermore, by using scCO2 the overall efficiency and sustainability of the transformation can be improved.
Maurizio Selva (Corresponding author)Email:
  相似文献   

17.
An Al2O3-ZrO2 xerogel (AZ-SG) was prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/AZ-SG catalyst was then prepared by an impregnation method, and was applied to hydrogen production by steam reforming of LNG. A nickel catalyst supported on commercial alumina (A-C) was also prepared (Ni/A-C) for comparison. The hydroxyl-rich surface of the AZ-SG support increased the dispersion of nickel species on the support during the calcination step. The formation of a surface nickel aluminate-like phase in the Ni/AZ-SG catalyst greatly enhanced the reducibility of the Ni/AZ-SG catalyst. The ZrO2 in the AZ-SG support increased the adsorption of steam onto the support and the subsequent spillover of steam from the support to the active nickel sites in the Ni/AZ-SG catalyst. Both the high surface area and the well-developed mesoporosity of the Ni/AZ-SG catalyst improved the gasification of adsorbed surface hydrocarbons in the reaction. In the steam reforming of LNG, the Ni/AZ-SG catalyst showed a better catalytic performance than the Ni/A-C catalyst. Moreover, the Ni/AZ-SG catalyst showed strong resistance toward catalyst deactivation.  相似文献   

18.
The maximization of the total surface area of Pt-SnO2/Al2O3 catalyst was studied by using the Taguchi method of experimental design. The catalysts were prepared by sol-gel method. The effects of HNO3, H2O and aluminum nitrate concentrations and the stirring rate on the total surface area were studied at three levels of each. L9 orthogonal array leading nine experiments was used in the experimental design. The parameter levels that give maximum total surface area were determined and experimentally verified. In the range of conditions studied it was found that, medium levels of HNO3 and H2O concentration and lower levels of aluminum nitrate concentration and stirring rate maximize the total surface area.  相似文献   

19.
This study investigated the toxicity of Cu (1, 10, 15, and 25 mol%) loaded TiO2 and pure TiO2 nanometersized photocatalysts during the development of zebrafish embryogenesis. The hatch rate decreased in the Cu x TiO y nanoparticles exposed groups (10, 20 ppt) compared to pure TiO2 nano-particles (10, 20 ppt) exposed or control groups. These Cu x TiO y and TiO2 nanoparticles led to developing mutated embryos with abnormal notochord formation, no tail, damaged eyes and abnormal heart development. Exposure to Cu x TiO y and pure TiO2 nanoparticles led to glutathione increase, catalase activity increase, GST increase and GSR increase than control. Penetration of the Cu x TiO y and pure TiO2 nanoparticles to the embryo was also tested. It was observed that Cu x TiO y and pure TiO2 nanoparticles penetrated into cells. Moreover Cu x TiO y penetrated into the skin, nerve and yolk sac epithelium cells on the zebrafish larvae as aggregated particles, which may induce the direct interaction between nanoparticles and cell to cause adverse biological responses. As a result, the Cu-loaded TiO2 nanoparticles had the toxicity of zebrafish embryo and larvae in the water environment.  相似文献   

20.
C4+ and S4+-codoped titanium dioxide (TiO2) having a rutile phase was prepared. By doping C4+ and S4+ ions into a TiO2 lattice, the absorption edge of rutile TiO2 powder was largely shifted from 400 to 700 nm. 2-Methylpyridine and methyleneblue were photocatalytically oxidized at high efficiency on C4+ and S4+-doped TiO2 under visible light at a wavelength longer than 5 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号