首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
2.
Turbulent premixed flames in the thin and broken reaction zones regimes are difficult to model with Large Eddy Simulation (LES) because turbulence strongly perturbs subfilter scale flame structures. This study addresses the difficulty by proposing a strained flamelet model for LES of high Karlovitz number flames. The proposed model extends a previously developed premixed flamelet approach to account for turbulence’s perturbation of subfilter premixed flame structures. The model describes combustion processes by solving strained premixed flamelets, tabulating the results in terms of a progress variable and a hydrogen radical, and invoking a presumed PDF framework to account for subfilter physics. The model is validated using two dimensional laminar flame studies, and is then tested by performing an LES of a premixed slot-jet direct numerical simulation (DNS). In the premixed regime diagram this slot-jet is found at the edge of the broken reaction zones regime. Comparisons of the DNS, the strained flamelet model LES, and an unstrained flamelet model LES confirm that turbulence perturbs flame structure to leading order effect, and that the use of an unstrained flamelet LES model under-predicts flame height. It is shown that the strained flamelet model captures the physics characterizing interactions of mixing and chemistry in highly turbulent regimes.  相似文献   

3.
A filtered tabulated chemistry model for LES of premixed combustion   总被引:1,自引:0,他引:1  
A new modeling strategy called F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation) is developed to introduce tabulated chemistry methods in Large Eddy Simulation (LES) of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when subgrid scale turbulence vanishes as LES should tend toward Direct Numerical Simulation (DNS). The filtered flame structure is mapped using 1-D filtered laminar premixed flames. Closure of the filtered progress variable and the energy balance equations are carefully addressed in a fully compressible formulation. The methodology is first applied to 1-D filtered laminar flames, showing the ability of the model to recover the laminar flame speed and the correct chemical structure when the flame wrinkling is completely resolved. The model is then extended to turbulent combustion regimes by including subgrid scale wrinkling effects in the flame front propagation. Finally, preliminary tests of LES in a 3-D turbulent premixed flame are performed.  相似文献   

4.
Zone conditional two-fluid equations are derived and validated against a DNS database for a turbulent premixed flame. The conditional statistics of major flow variables are investigated to understand the mechanism of flame-generated turbulence. The flow field in the burned region shows substantially increased, highly anisotropic turbulence to conserve mass through a flamelet surface. The transverse component may be larger than the axial component for a distributed pdf of the flamelet orientation angle in the middle of the flame brush. The opposite occurs due to redistribution of turbulent kinetic energy and flamelet orientation mostly normal with respect to the mean flow at the end of the flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms induced by fluctuating pressure and velocity on the flame surface. Ad hoc modeling of some interfacial terms may be required for further application of the two-fluid model for modeling turbulence in turbulent premixed combustion simulations.  相似文献   

5.
Turbulent multiphase combustion plays an important role in both nature (e.g., volcanos and pool fires) and industry (e.g., industrial furnaces, aeroengines, and internal combustion engines). It is a highly complex multiscale and multi-physicochemical process in which interactions between the dispersed and continuous phases, phase change, droplet collisions, evaporation, mixing, heat transfer, and chemical reactions occur simultaneously. In recent years, significant progress has been made in understanding the mechanisms of spray flames and their behaviors in combustion engines. This paper covers key and representative developments in the area of turbulent spray combustion with a focus on spray–chemistry–turbulence interactions. The effects of turbulence–chemistry, spray–turbulence, and spray–chemistry interactions on the spray process, ignition, flame stabilization and emission are comprehensively discussed at elevated pressures and temperatures. Furthermore, spray–radiation and spray flame–wall interactions, which are important to engine performance and emission characteristics, are scrutinized. Supercritical spray flames and turbulent spray flames in dual-fuel engines are also discussed. Finally, outlooks and further challenges for the research field are outlined.  相似文献   

6.
In this work, an integrated Large Eddy Simulation (LES) model is developed for sooting turbulent nonpremixed flames and validated in a laboratory scale flame. The integrated approach leverages state-of-the-art developments in both soot modeling and turbulent combustion modeling and gives special consideration to the small-scale interactions between turbulence, soot, and chemistry. The oxidation of the fuel and the formation of gas-phase soot precursors is described by the Flamelet/Progress Variable model, which has been previously extended to account for radiation losses. However, previous DNS studies have shown that Polycyclic Aromatic Hydrocarbons (PAH), the immediate precursors of soot particles, exhibit significant unsteady effects due to relatively slow chemistry. To model these unsteady effects, a transport equation is solved for a lumped PAH species. In addition, due to the removal of PAH from the gas-phase, alternative definitions of the mixture fraction, progress variable, and enthalpy are proposed. The evolution of the soot population is modeled with the Hybrid Method of Moments (HMOM), an efficient statistical model requiring the solution of only a few transport equations describing statistics of the soot population. The filtered source terms in these equations that describe the various formation, growth, and destruction processes are closed with a recently developed presumed subfilter PDF approach that accounts for the high spatial intermittency of soot. The integrated LES model is validated in a piloted natural gas turbulent jet diffusion flame and is shown to predict the magnitude of the maximum soot volume fraction in the flame relatively accurately, although the maximum soot volume fraction is shown to be rather sensitive to the subfilter scalar dissipation rate model.  相似文献   

7.
Direct numerical simulation (DNS) of three-dimensional turbulent reacting channel flows with buoyancy is carried out using a spectral method. Statistical results from the DNS database are used to validate an algebraic second-order-moment sub-grid-scale (ASOM-SGS) combustion model and show that the ASOM-SGS model is reasonable. Furthermore, a methane–air jet flame is simulated by large–eddy simulation (LES) using the ASOM-SGS model and indicates that the Reynolds–averaged Navier-Stokes ASOM combustion model is a reasonable model.  相似文献   

8.
In three-dimensional arbitrary curvilinear coordinates, an Eulerian–Lagrangian formulation is applied to large-eddy simulation (LES) of instantaneous gas–liquid two-phase turbulent combustion flows in gas turbine combustors. Three dimensional block-structured grids are generated by zone method and solving a system of elliptic partial differential equations. The k-equation sub-grid scale model is used to simulate the sub-grid eddy viscosity and the EBU combustion sub-grid scale model is employed to predict the chemical reaction rate. The gas-phase governing equations are solved with SIMPLE algorithm and hybrid scheme in non-staggered grid system. A stochastic separated flow formulation is used to track the droplet trajectories velocities, size and temperature history by Lagrangian equations of motion and thermal balance. Multi-zone coupling method is employed to transport data between interfaces. The influences of two different primary hole positions and three different fuel–air ratios on turbulent two-phase reacting flows are calculated. Predictions are in reasonable agreement with the measured velocity using PIV system and temperature, species concentration measurements at the exit. It is shown that the present approach may be used to study spray combustion flow fields for guiding the design of advanced gas turbine combustors.  相似文献   

9.
《Combustion and Flame》2001,124(1-2):65-81
A model to simulate numerically self-ignition and combustion of initially non-premixed turbulent systems is proposed. Its development is based on Direct Numerical Simulations (DNS) of turbulent mixing layers between cold fuel and a hot oxidizer. The direct numerical simulations are used to better understand the physical mechanisms controlling mixing, self-ignition, and establishment of combustion inside turbulent mixing layers. They are also used to define the mathematical formulation of the model, and to test its assumptions. The model has a component for self-ignition and an additional component for subsequent high-temperature combustion. Self-ignition is simulated using an approach based on presumed Probability Density Functions (PDFA model) that takes into account the effects of turbulence on mixing formation during and after self-ignition. The PDFA model describes the turbulent reacting flow using a mixture fraction variable and a generalized reaction progress variable. The high-temperature combustion, established after self-ignition has occurred, is computed using a flamelet approach (CHI model). The two model components are coupled by a function of the progress variable deduced from DNS results. The PDFA-CHI model is implemented in a Reynolds averaged Computational Fluid Dynamics (CFD) code, and is tested in one-dimensional (1D) and two-dimensional (2D) configurations. The computational results reproduce ignition phenomena in the turbulent field similar to the DNS calculations.  相似文献   

10.
S. Som 《Combustion and Flame》2010,157(6):1179-1386
Injector flow dynamics and primary breakup processes are known to play a pivotal role in determining combustion and emissions in diesel engines. In the present study, we examine the effects of primary breakup modeling on the spray and combustion characteristics under diesel engine conditions. The commonly used KH model, which considers the aerodynamically induced breakup based on the Kelvin-Helmholtz instability, is modified to include the effects of cavitation and turbulence generated inside the injector. The KH model and the new (KH-ACT) model are extensively evaluated by performing 3-D time-dependent simulations with detailed chemistry under diesel engine conditions. Results indicate that the inclusion of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. Predictions are compared with measurements for non-evaporating and evaporating sprays, as well as with flame measurements. While both the models are able to reproduce the experimentally observed global spray and combustion characteristics, predictions using the KH-ACT model exhibit closer agreement with measurements in terms of liquid penetration, cone angle, spray axial velocity, and liquid mass distribution for non-evaporating sprays. Similarly, the KH-ACT model leads to better agreement with respect to the liquid length and vapor penetration distance for evaporating sprays, and with respect to the flame lift-off location for combusting sprays. The improved agreement is attributed to the ability of the new model to account for the effects of turbulence and cavitation generated inside the injector, which enhance the primary breakup. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. This flame structure is consistent with the Dec’s model for diesel engine combustion (Dec, 1997) [1], and well captured by a newly developed flame index based on the scalar product of CO and O2 mass fraction gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号