首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Characterization of cytolytic T lymphocyte (CTL) responses to tumor antigens has been impeded by a lack of direct assays of CTL activity. We have synthesized reagents ("tetramers") that specifically stain CTLs recognizing melanoma antigens. Tetramer staining of tumor-infiltrated lymph nodes ex vivo revealed high frequencies of tumor-specific CTLs which were antigen-experienced by surface phenotype. In vitro culture of lymph node cells with cytokines resulted in very large expansions of tumor-specific CTLs that were dependent on the presence of tumor cells in the lymph nodes. Tetramer-guided sorting by flow cytometer allowed isolation of melanoma-specific CTLs and confirmation of their specificity and their ability to lyse autologous tumor cells. Our results demonstrate the value of these novel reagents for monitoring tumor-specific CTL responses and for generating CTLs for adoptive immunotherapy. These data also indicate that strong CTL responses to melanoma often occur in vivo, and that the reactive CTLs have substantial proliferative and tumoricidal potential.  相似文献   

2.
T lymphocytes play a crucial role in the host's immune response to cancer. Although there is ample evidence for the presence of tumor-associated antigens on a variety of tumors, they are seemingly unable to elicit an adequate antitumor immune response. Modern cancer immunotherapies are therefore designed to induce or enhance T cell reactivity against tumor antigens. Vaccines consisting of tumor cells transduced with cytokine genes in order to enhance their immunogenicity have been intensely investigated in the past decade and are currently being tested in clinical trials. With the development of novel gene transfer technologies it has now become possible to transfer cytokine genes directly into tumors in vivo. The identification of genes encoding tumor-associated antigens and their peptide products which are recognized by cytotoxic T lymphocytes in the context of major histocompatibility complex class I molecules has allowed development of DNA-based vaccines against defined tumor antigens. Recombinant viral vectors expressing model tumor antigens have shown promising results in experimental models. This has led to clinical trials with replication-defective adenoviruses encoding melanoma-associated antigens for the treatment of patients with melanoma. An attractive alternative concept is the use of plasmid DNA, which can elicit both humoral and cellular immune responses following injection into muscle or skin. New insights into the molecular biology of antigen processing and presentation have revealed the importance of dendritic cells for the induction of primary antigen-specific T cell responses. Considerable clinical interest has arisen to employ dendritic cells as a vehicle to induce tumor antigen-specific immunity. Advances in culture techniques have allowed the generation of large numbers of immunostimulatory dendritic cells in vitro from precursor populations derived from blood or bone marrow. Experimental immunotherapies which now transfer genes encoding tumor-associated antigens or cytokines directly into professional antigen-presenting cells such as dendritic cells are under evaluation in pre-clinical studies at many centers. Gene therapy strategies, such as in vivo cytokine gene transfer directly into tumors as well as the introduction of genes encoding tumor-associated antigens into antigen-presenting cells hold considerable promise for the treatment of patients with cancer.  相似文献   

3.
The extraordinary specificity of immune responses mediated by T cells against individual syngeneic tumors has led to the concept that many tumor antigens are 'unique'. The recent isolation of several T-cell-recognized unique antigens from various murine and human tumors has shown that the antigenic peptides are caused by somatic mutations and, thus, are truly tumor-specific. The following review summarizes current knowledge about these mutant tumor-specific antigens and their possible role in the development and progression of cancer. It also discusses some functional differences between mutant tumor-specific and shared tumor antigens, which generally represent unaltered peptides, also present on some normal cells.  相似文献   

4.
Coculture of melanoma cells and T cell clones derived from tumor-infiltrating lymphocytes (TIL) generally results in lysis of the antigen-bearing tumor cells but to inefficient proliferation and IL-2 secretion by responder T cells. This suboptimal activation is classically explained by an inability of tumor cells to provide costimulatory signals. Here we analyzed the responses to synthetic peptides of HLA-A2.1-restricted CTL clones specific for melanoma antigens MART-1 and NA17-A. We showed that peptide concentrations ranging from 1 pM to 10 nM efficiently sensitized the peptide transporter-deficient T2 cells to lysis. T2 cells pulsed with melanoma peptides also induced TIL proliferation and detectable secretion of IL-2, IFN-gamma and GM-CSF, but only for peptide concentrations 10- to 10,000-fold higher than those required for lysis. Hence this suggests that partial triggering of TIL clones by melanoma cells could be due to expression of appropriate MHC-peptide complexes at subthreshold levels. In support of this, we showed that melanoma cells, unable to trigger IL-2 secretion, developed this ability when incubated with the appropriate peptide. These results indicate that the level of antigens expressed on melanoma tumors critically affects TIL activation status and thus, the efficiency of specific immune reactions mediated by these cells.  相似文献   

5.
The existence of CD8+ CTLs that are capable of recognizing MHC class I-bound, human tumor-associated peptide antigens is now unequivocally documented in cancer patients. Thus far, the role of CD8+ T cells in tumor immunity has been predominantly viewed in terms of cytolytic ability as the prime mode of their function. Interestingly, it is increasingly evident that CD8+ T cells are capable of synthesizing both type I and type II cytokines. Thus, it is conceivable that tumor antigen-specific but noncytolytic CD8+ T cells might play an important role in antitumor immune response by synthesizing type I cytokine. Through such cytokines, they could provide "help" for the process of generating as well as in maintaining an effective CD8+ CTL response. In addition, they might recruit other types of effector cells (such as natural killer cells, macrophages, and others) locally at the tumor site. Either way, they could exert a profoundly positive role in cell-mediated antitumor immune response, particularly because the great majority of tumor cells express only MHC class I molecules that present peptide epitopes to CD8+ T cells. Unfortunately, tumor antigen-specific, noncytolytic but type I cytokine-secreting CD8+ T cells have not received much investigative attention. Here we show that CD8+ T cells, isolated from the tumor-infiltrating lymphocytes from human melanoma, synthesize type I cytokine (IFN-gamma and tumor necrosis factor alpha) in a MHC class I-restricted and tumor-specific noncytolytic interaction with the autologous melanoma cells.  相似文献   

6.
During the last 7 years significant progress has been made in the identification of melanoma-associated antigens recognized by cytotoxic T lymphocytes (CTL). These antigens belong to three main groups: cancer/testis-specific antigens (MAGE, BAGE, GAGE, PRAME and NY-ESO-1), melanocyte differentiation antigens (tyrosinase, Melan-A/MART-1, gp100, TRP-1 and TRP-2), and mutated or aberrantly expressed antigens (MUM-1, CDK4, beta-catenin, gp100-in4, p15 and N-acetylglucosaminyltransferase V). In this review we have summarized the available data concerning the characterization of melanoma-associated antigens, focusing on their immunogenic and protective properties. The development of a strong immune response to differentiation antigens is limited by the existence of tolerance to these "self"-antigens, permitting the involvement of only T cells with low affinity T-cell receptors. Among the melanoma differentiation antigens, only gp100 has been shown to be a tumor regression antigen. The cancer/testis-specific antigens such as MAGE and PRAME should potentially be highly immunogenic antigens. They contain several potential HLA class I binding epitopes and are present only in the testes, which are not accessible to the cells of the immune system owing to the lack of direct contact with the immune cells and the lack of HLA class I expression on the surface of germ cells. But only two patients have been found who responded to these antigens in vivo, indicating their genuinely low immunogenicity. A comparison of the predicted secondary structures of these two groups of antigens (cancer/testis-specific and differentiation antigens) revealed enrichment of long alpha-helical stretches in the cancer/testis-specific antigens. We hypothesize that such highly organized stable structures could, first, reduce denaturation of the protein and, thus, ubiquitinylation as a degradation signal, and, second, diminish the efficiency of the protein unfolding - a necessary step in the proteolytic cleavage by proteasomes. High structural stability could therefore be responsible for the low immunogenicity of these proteins. In this case, modifications decreasing the stability of these proteins might be a means of improving the immune response to these potentially therapeutically useful antigens.  相似文献   

7.
Spontaneous regression of AK-5, a histiocytic tumor, is mediated by CD3-, CD8+ NK cells through ADCC. The onset of AK-5 regression is associated with the induction of humoral immune response and the augmentation of effector function. The mechanism of tumor cell death involves both necrosis and apoptosis. Interleukin-12, a 75-kDa heterodimeric cytokine, has multiple effects on T and NK cells. We have investigated the role of IL-12 in the NK cell-mediated AK-5 tumor regression process. Subcutaneous transplantation of AK-5 tumor induced the expression of IL-12 (p35 and p40) message by Day 6-8 in the splenocytes of syngenic rats. Similarly, analysis of serum samples from tumor-bearing animals showed the presence of circulating IL-12 around the same time. Interaction of immune cells with antibody-tagged AK-5 cells in vitro also triggered the expression of IL-12 message and protein by 3 hr. The circulating IL-12 in the sera of tumor-rejecting animals, as well as rIL-12, stimulated NK cell proliferation, expression of CD16 and CD25, and the activation of NK cells function. These observations suggest that the ability of the AK-5 tumor to induce the endogenous production of IL-12 may be responsible for keeping the NK cells constantly in an activated state, thus demonstrating an efficient mechanism for the complete regression of the tumor.  相似文献   

8.
Cytotoxic T lymphocytes specific for tumor-associated antigens are produced by exposing animals to tumor cells and stimulating lymphocytes from animals immunized in vitro with tumor cells and small amounts of interleukin-2 (IL-2). This study was designed to determine whether a fast-growing immunogenic avian sarcoma virus-induced glioma produces primed cytotoxic T lymphocyte precursors during its progression. Lymphocytes from intracerebral glioma-bearing rats generally failed to proliferate in vitro in response to immunization with tumor cells and IL-2 and, when proliferative responses were observed, the lymphocytes were not cytotoxic for glioma cells. However, when the same tumor was growing subcutaneously, lymphocytes proliferated and exhibited glioma-specific cytotoxicity when stimulated in vitro with autologous tumor cells and IL-2. Subcutaneous immunization of intracerebral glioma-bearing rats with tumor cells and adjuvant induced strong cytotoxic T lymphocyte responses. The results demonstrated that, while intracerebral tumor progression itself does not induce an anti-glioma immune response, immune responses to tumor-associated antigens may be induced by systemic immunization of tumor-bearing animals. The results suggest that the immunogenicity of brain tumors is masked by the immunologically privileged status of the brain, not by the induction of generalized immune suppression during tumor progression.  相似文献   

9.
The immune system can recognize self antigens expressed by cancer cells. Differentiation antigens are prototypes of these self antigens, being expressed by cancer cells and their normal cell counterparts. The tyrosinase family proteins are well characterized differentiation antigens recognized by antibodies and T cells of patients with melanoma. However, immune tolerance may prevent immunity directed against these antigens. Immunity to the brown locus protein, gp75/ tyrosinase-related protein-1, was investigated in a syngeneic mouse model. C57BL/6 mice, which are tolerant to gp75, generated autoantibodies against gp75 after immunization with DNA encoding human gp75 but not syngeneic mouse gp75. Priming with human gp75 DNA broke tolerance to mouse gp75. Immunity against mouse gp75 provided significant tumor protection. Manifestations of autoimmunity were observed, characterized by coat depigmentation. Rejection of tumor challenge required CD4(+) and NK1.1(+) cells and Fc receptor gamma-chain, but depigmentation did not require these components. Thus, immunization with homologous DNA broke tolerance against mouse gp75, possibly by providing help from CD4(+) T cells. Mechanisms required for tumor protection were not necessary for autoimmunity, demonstrating that tumor immunity can be uncoupled from autoimmune manifestations.  相似文献   

10.
CTLs specific for tumor antigens play a major role in the immunity against cancer. We have shown that class I-restricted CTLs can be induced by injecting soluble antigens mixed in an antigen formulation (AF) that consists of squalane, Tween 80, and Pluronic L121 (S. Raychaudhuri et al., Proc. Natl. Acad. Sci. USA, 89: 8308-8312, 1992). In this study, using ovalbumin and the ovalbumin-expressing transfectoma (EG7) as a tumor model system, we examined the in vivo antitumor effect of antigen-AF mixture. Vaccination of mice with ovalbumin in AF 2 or 3 days after EG7 tumor challenge showed significant inhibition of tumor growth compared to mice vaccinated with ovalbumin in alum or in saline. Depletion of CD8+ cells at the time of immunization completely abrogated the AF-induced tumor protection, indicating that CD8+ T cells are the major effectors in tumor protection in vivo. Depletion of CD4+ cells led to a marginal loss of tumor protection, which may be the result of inhibition of ovalbumin-specific CTL response due to the lack of T-helper activity. Our results demonstrate that AF can be used in subunit vaccines to stimulate CTLs and tumor regression in vivo.  相似文献   

11.
T cells play a key role in the control of abnormal B cell proliferation. Factors that play a role in inadequate T cell responses include absence of expression of costimulatory and adhesion molecules by the malignant B cells and lack of cytotoxic T cells specific for tumor-associated antigens. A number of approaches have been used to enhance T cell response against malignant B cells. Agents such as soluble CD40 ligand can enhance expression of costimulatory molecules by the malignant B cells and improve their ability to activate T cells. Anti-CD3-based bispecific antibodies can retarget T cells toward the tumor cells irrespective of T cell specificity. We used the V 38C13 murine lymphoma model to assess whether the combination of soluble CD40 ligand and anti-CD3-based bispecific antibody can enhance T cell activation induced by malignant B cells more effectively than either approach alone. Expression of CD80, CD86, and ICAM-1 on lymphoma cells was up-regulated by soluble CD40 ligand. Syngeneic T cells were activated more extensively by lymphoma cells when the lymphoma cells were pre-treated with soluble CD40 ligand. Bispecific-antibody induced T cell activation was more extensive when lymphoma cells pretreated with soluble CD40 ligand were present. The combination of soluble CD40 ligand plus bispecific antibody enhanced the median survival of mice compared to mice treated with bispecific antibody alone. We conclude that pretreatment of tumor cells with agents capable of inducing costimulatory molecule expression, such as soluble CD40 ligand can enhance the ability of malignant B cells to activate T cells. This effect is enhanced by the addition of bispecific antibody. The combination of enhanced expression of costimulatory molecules and retargeting of T cells by bispecific antibody may allow for a more effective T-cell-based immunotherapy.  相似文献   

12.
T cells of mice display V beta-specific reactivity for a spectrum of mouse mammary tumor virus (Mtv) antigens; confrontation with these antigens during ontogeny causes substantial "holes" in the T cell repertoire. Since endogenous Mtv antigens are rare in other species, the question arises whether V beta-specific recognition of Mtv antigens is unique to mice. To examine this question, rat T cells were allowed to differentiate from stem cells in severe combined immunodeficiency (SCID) mice. These rat-->mouse xenochimeras were prepared under a variety of conditions. The results show that rat T cells are strongly reactive to mouse Mtv antigens, both in terms of tolerogenicity and immunogenicity. In fact, the V beta specificity of rat and mouse T cells for Mtv antigens is almost indistinguishable.  相似文献   

13.
Strategies have been developed to characterize tumor antigens recognized by cytolytic T lymphocytes (CTL). We use a genetic approach based on the transfection of HLA genes and cDNA libraries in COS cells to isolate the gene producing the antigenic peptide. The tumor-specific expression of this gene can be evaluated by cDNA synthesis and quantitative PCR amplification. Transfection of fragments of the isolated gene allows the identification of the region encoding the antigenic peptide. Peptides are synthesized and tested for their ability to sensitize target cells to lysis by the CTL.  相似文献   

14.
The induction of optimal systemic antitumor immunity involves the priming of both CD4(+) and CD8(+) T cells specific for tumor-associated antigens. The role of CD4(+) T helper cells (Th) in this response has been largely attributed to providing regulatory signals required for the priming of major histocompatibility complex class I restricted CD8(+) cytolytic T lymphocytes, which are thought to serve as the dominant effector cell mediating tumor killing. However, analysis of the effector phase of tumor rejection induced by vaccination with irradiated tumor cells transduced to secrete granulocyte/macrophage colony-stimulating factor indicates a far broader role for CD4(+) T cells in orchestrating the host response to tumor. This form of immunization leads to the simultaneous induction of Th1 and Th2 responses, both of which are required for maximal systemic antitumor immunity. Cytokines produced by these CD4(+) T cells activate eosinophils as well as macrophages that produce both superoxide and nitric oxide. Both of these cell types then collaborate within the site of tumor challenge to cause its destruction.  相似文献   

15.
Recent experiments have suggested that tumor necrosis factor alpha (TNFalpha) can down-regulate islet-specific T cells and prevent the development of autoimmune diabetes. Here we demonstrate that transgenic mice expressing both TNFalpha and the Leishmania major LACK antigen in the pancreas (RIP-TNFalpha/RIP-LACK) exhibit an impaired ability to mount a CD4+ T cell response against LACK. In addition, peripheral CD4+ T cells from TCR transgenic mice (TCR-LACK/RIP-TNFalpha/RIP-LACK) produced reduced interleukin-2 but elevated levels of T helper 2 cytokines in response to LACK peptide in vitro. Taken together, our data suggest that TNFalpha may act in vivo to modulate a potentially damaging self-reactive T cell response by inducing tolerance to pancreatic antigens.  相似文献   

16.
17.
18.
Noninfectious lung injury is common after allogeneic bone marrow transplantation (BMT), but its association with acute graft-versus-host disease (GVHD) is unclear. Using a murine BMT system where donor and host differ by multiple minor histocompatibility (H) antigens, we investigated the nature of lung injury and its relationship both to systemic GVHD and host-reactive donor T cells. Lethally irradiated CBA hosts received syngeneic BMT or allogeneic (B10.BR) T-cell-depleted (TCD) bone marrow (BM) with and without the addition of T cells. Six weeks after BMT, significant pulmonary histopathology was observed in animals receiving allogeneic BMT compared with syngeneic controls. Lung damage was greater in mice that received allogeneic T cells and developed GVHD, but it was also detectable after TCD BMT when signs of clinical and histologic acute GVHD were absent. In each setting, lung injury was associated with significant alterations in pulmonary function. Mature, donor (Vbeta6(+) and Vbeta3(+)) T cells were significantly increased in the broncho-alveolar lavage (BAL) fluid of all allogeneic BMT recipients compared with syngeneic controls, and these cells proliferated and produced interferon-gamma (IFN-gamma) to host antigens in vitro. These in vitro responses correlated with increased IFN-gamma and tumor necrosis factor-alpha (TNF-alpha) in the BAL fluid. We conclude that alloreactive donor lymphocytes are associated with lung injury in this allogeneic BMT model. The expansion of these cells in the BAL fluid and their ability to respond to host antigens even when systemic tolerance has been established (ie, the absence of clinical GVHD) suggest that the lung may serve as a sanctuary site for these host reactive donor T cells. These findings may have important implications with regard to the evaluation and treatment of pulmonary dysfunction after allogeneic BMT even when clinical GVHD is absent.  相似文献   

19.
A number of human tumor antigens have been characterized recently using cytolytic T lymphocytes (CTL) as screening tools. Some of them are encoded by MAGE-type genes, which are silent in normal tissues except in male germ cells, but are activated in a variety of tumors. These tumor-specific shared antigens appear to be promising targets for cancer immunotherapy. However, the choice of these antigens as targets has been questioned because of the lack of direct evidence that in vivo responses against such antigens can lead to tumor rejection. The antigen encoded by the mouse gene P1A represents the only available animal model system for MAGE-type tumor antigens. We show here that mice immunized by injection of L1210 leukemia cells expressing P1A and B7-1 (L1210.P1A.B7-1) are efficiently protected against a challenge with a lethal dose of mastocytoma P815 tumor cells, which express P1A. Mice immunized with L1210 cells expressing B7-1 but not P1A were not protected. Furthermore, we observed that P1A-transgenic mice, which are tolerant to P1A, were not protected after immunization with L1210.P1A.B7-1. These results demonstrate that the immune response to P1A is the major component of the tumor rejection response observed in normal mice, and support the use of tumor-specific shared antigens as targets for the immunotherapy of human cancer.  相似文献   

20.
Tumor immunology     
Malignant tumors express antigens that may stimulate and serve as targets for antitumor immunity. Virally induced tumors usually contain integrated proviral genomes in theircellulargenomes and often express viral genome-encoded proteins that may stimulate specific host immune responses. Antigens unique to individual tumors that stimulate specific rejection of transplanted tumors have been demonstrated only in experimental animals. Other tumor antigens that potentially can stimulate immune responses are shared by different tumors. These include products of mutated or rearranged oncogenes or tumor-suppressor genes. Tumors may also overexpress tissue differentiation antigens or embryonic antigens, which also have the potential to be recognized by the immune system. The recent identification of tumor antigens recognized by cytotoxic T cells opens up new possibilities for constructing chemically defined antigens for specific immunotherapy. Treatment of malignant tumors in humans by immunologic approaches, although theoretically attractive, has not yet succeeded on a large scale. Important progress in immunotherapy of cancer is emerging with several different treatment modalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号