首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
A direct repeat recombination assay between SUP4 heteroalleles detects unrepaired heteroduplex DNA (hDNA) as sectored colonies. The frequency of unrepaired heteroduplex is dependent on the mismatch and is highest in a construct that generates C:C or G:G mispairs and lowest in one that generates T:G or C:A mispairs. In addition, unrepaired hDNA increases for all mismatches tested in pms1 mismatch repair-deficient strains. These results support the notion that hDNA is formed across the SUP4 repeats during the recombination event and is then subject to mismatch repair. The effects of various repair and recombination defective mutations on this assay were examined. Unrepaired heteroduplex increases significantly only in rad52 mutant strains. In addition, direct repeat recombination is reduced 2-fold in rad52 mutant strains, while in rad51, rad54, rad55 and rad57 mutants direct repeat recombination is increased 3-4-fold. Mutations in the excision repair gene, RAD1, do not affect the frequency of direct repeat recombination. However, the level of unrepaired heteroduplex is slightly decreased in rad1 mutant strains. Similar to previous studies, rad1 rad52 double mutants show a synergistic reduction in direct repeat recombination (35-fold). Interestingly, unrepaired heteroduplex is reduced 4-fold in the double mutants. Experiments with shortened repeats suggest that the reduction in unrepaired heteroduplex is due to decreased hDNA tract length in the double mutant strain.  相似文献   

2.
Female wild Japanese monkeys (Macaca fuscata), as with all male cercopithecoids, use the mesiobuccal surfaces or the elongated crests of the mandibular third premolars (P3s), as cutting blocks that wear against edges of maxillary canines during threat manifestation or food-eating. In other words, the crests of their P3s are honed with the maxillary canines. The crests become sloped during growth and more heavily striated with the advance of age. The number, directions, lengths, and widths of these striations have been analyzed quantitatively using scanning electron microscopy (SEM). Two samples showed two distinct types of parallel striations, one longer and thicker (171.5 microns long and 14.5 microns wide on average) than the other (114.8 microns long and 12.0 microns wide on average). These striations were caused by contact between the sharp edge of the upper canine and the P3 during honing (canine/premolar complex). The long and thick striations are asymmetrical with widened parts or pits on one end, and were easily distinguished from other thinner striations which may have been caused by fine particles. The third sample showed Hunter-Schreger bands with striae of Retzius on the sloping heavily worn mesiobuccal surface. The features of these thick parallel striations indicate that they result from closing movements of the jaw.  相似文献   

3.
An intrachromosomal recombination assay that monitors events between alleles of the ade2 gene oriented as inverted repeats was developed. Recombination to adenine prototrophy occurred at a rate of 9.3 x 10(-5)/cell/generation. Of the total recombinants, 50% occurred by gene conversion without crossing over, 35% by crossover and 15% by crossover associated with conversion. The rate of recombination was reduced 3,000-fold in a rad52 mutant, but the distribution of residual recombination events remained similar to that seen in the wild type strain. In rad51 mutants the rate of recombination was reduced only 4-fold. In this case, gene conversion events unassociated with a crossover were reduced 18-fold, whereas crossover events were reduced only 2.5-fold. A rad51 rad52 double mutant strain showed the same reduction in the rate of recombination as the rad52 mutant, but the distribution of events resembled that seen in rad51. From these observations it is concluded that (i) RAD52 is required for high levels of both gene conversions and reciprocal crossovers, (ii) that RAD51 is not required for intrachromosomal crossovers, and (iii) that RAD51 and RAD52 have different functions, or that RAD52 has functions in addition to those of the Rad51/Rad52 protein complex.  相似文献   

4.
To understand the mechanisms involved in homologous recombination, we have performed a search for Saccharomyces cerevisiae mutants unable to carry out plasmid-to-chromosome gene conversion. For this purpose, we have developed a colony color assay in which recombination is induced by the controlled delivery of double-strand breaks (DSBs). Recombination occurs between a chromosomal mutant ade2 allele and a second plasmid-borne ade2 allele where DSBs are introduced via the site-specific HO endonuclease. Besides isolating a number of new alleles in known rad genes, we identified a novel allele of the RFA1 gene, rfa1-44, which encodes the large subunit of the heterotrimeric yeast single-stranded DNA-binding protein RPA. Characterization of rfa1-44 revealed that it is, like members of the RAD52 epistasis group, sensitive to X rays, high doses of UV, and HO-induced DSBs. In addition, rfa1-44 shows a reduced ability to undergo sporulation and HO-induced gene conversion. The mutation was mapped to a single-base substitution resulting in an aspartate at amino acid residue 77 instead of glycine. Moreover, all radiation sensitivities and repair defects of rfa1-44 are suppressed by RAD52 in a dose-dependent manner, and one RAD52 mutant allele, rad52-34, displays nonallelic noncomplementation when crossed with rfa1-44. Presented is a model accounting for this genetic interaction in which Rfa1, in a complex with Rad52, serves to assemble other proteins of the recombination-repair machinery at the site of DSBs and other kinds of DNA damage. We believe that our findings and those of J. Smith and R. Rothstein (Mol. Cell. Biol. 15:1632-1641, 1995) are the first in vivo demonstrations of the involvement of a eukaryotic single-stranded binding protein in recombination and repair processes.  相似文献   

5.
BACKGROUND: Rad51 and Dmc1 are Saccharomyces cerevisiae homologues of the Escherichia coli recombination protein RecA. Mutant analysis has shown that both proteins are required for normal meiotic recombination, for timely and efficient formation of synaptonemal complex and for normal progression out from meiotic prophase. RESULTS: We have further characterized rad51 and dmc1 single mutants. A dmc1 mutation confers more severe defects in double strand break (DSB) resolution, crossover recombination and meiotic progression than does a rad51 mutant; in contrast, during return to growth, a rad51 mutation confers more severe defects in viability and intrachromosomal recombination than does a dmc1 mutation. Analysis of a rad51 dmc1 double mutant, in parallel with single mutants, shows that the double mutant is more defective with respect to the formation of crossovers during meiosis and, especially strikingly, with respect to interhomologue and intrachromosomal recombination during return to growth. Consistent with the observation of DMC1-dependent recombination in a rad51 mutant, subnuclear complexes of Dmc1 protein were detected for the first time in this mutant. In contrast to the effects on recombination, the effect of the double mutant on meiotic progression was similar to that of the rad51 single mutant. CONCLUSION: Rad51 and Dmc1 each make unique contributions to meiotic recombination. However, the two proteins are capable of substituting for one another under some circumstances, implying that they most likely share at least one recombination function. Recombination and cell cycle phenotypes are all consistent with the possibility that a dmc1 mutation causes an arrest of the post-DSB recombination complexes at a later, more stable stage than does a rad51 mutation.  相似文献   

6.
7.
8.
We examined the effect of a single variant repeat on the stability of a 51-base pair (bp) microsatellite (poly GT). We found that the insertion stabilizes the microsatellite about fivefold in wild-type strains. The stabilizing effect of the variant base was also observed in strains with mutations in the DNA mismatch repair genes pms1, msh2 and msh3, indicating that this effect does not require a functional DNA mismatch repair system. Most of the microsatellite alterations in the pms1, msh2 and msh3 strains were additions or deletions of single GT repeats, but about half of the alterations in the wild-type and msh6 strains were large (> 8 bp) deletions or additions.  相似文献   

9.
Transformation of the respiratory-defective mutant (E264/U2) of Saccharomyces cerevisiae with a yeast genomic library yielded two different plasmids capable of restoring the ability of the mutant to grow on non-fermentable substrates. One of the plasmids (pG52/T3) contained SDH1 coding for the flavoprotein subunit of mitochondrial succinate dehydrogenase. The absence of detectable succinate dehydrogenase activity in mitochondria of E264/U2 and the lack of complementation of the mutant by an sdh11null strain indicated a mutation in SDH1. The second plasmid (pG52/T8) had an insert with reading frame (YJL045w) of yeast chromosome X coding for a homologue of SDH1. Subclones containing the SDH1 homologue (SDH1b), restored respiration in E264/U2 indicating that the protein encoded by this gene is functional. The expression of the two genes was compared by assaying the beta-galactosidase activities of yeast transformed with plasmids containing fusions of lacZ to the upstream regions of SDH1 and SDH1b. The 100-500 times lower activity measured in transformants harbouring the SDH1b-lacZ fusion indicates that the isoenzyme encoded by SDH1b is unlikely to play an important role in mitochondrial respiration. This is also supported by the absence of any obvious phenotype in cells with a disrupted copy of SDH1b.  相似文献   

10.
Distinct classes of sporulation-specific genes are sequentially expressed during the process of spore formation in Saccharomyces cerevisiae. The transition from expression of early meiotic genes to expression of middle sporulation-specific genes occurs at about the time that cells exit from pachytene and form the meiosis I spindle. To identify genes encoding potential regulators of middle sporulation-specific gene expression, we screened for mutants that expressed early meiotic genes but failed to express middle sporulation-specific genes. We identified mutant alleles of RPD3, SIN3, and NDT80 in this screen. Rpd3p, a histone deacetylase, and Sin3p are global modulators of gene expression. Ndt80p promotes entry into the meiotic divisions. We found that entry into the meiotic divisions was not required for activation of middle sporulation genes; these genes were efficiently expressed in a clb1 clb3 clb4 strain, which fails to enter the meiotic divisions due to reduced Clb-dependent activation of Cdc28p kinase. In contrast, middle sporulation genes were not expressed in a dmc1 strain, which fails to enter the meiotic divisions because a defect in meiotic recombination leads to a RAD17-dependent checkpoint arrest. Expression of middle sporulation genes, as well as entry into the meiotic divisions, was restored to a dmc1 strain by mutation of RAD17. Our studies also revealed that NDT80 was a temporally distinct, pre-middle sporulation gene and that its expression was reduced, but not abolished, on mutation of DMC1, RPD3, SIN3, or NDT80 itself. In summary, our data indicate that Ndt80p is required for expression of middle sporulation genes and that the activity of Ndt80p is controlled by the meiotic recombination checkpoint. Thus, middle genes are expressed only on completion of meiotic recombination and subsequent generation of an active form of Ndt80p.  相似文献   

11.
The importance of a cluster of conserved aromatic residues of human epidermal growth factor (hEGF) to the receptor binding epitope is suggested by the interaction of His10 and Tyr13 of the A-loop with Tyr22 and Tyr29 of the N-terminal beta-sheet to form a hydrophobic surface on the hEGF protein. Indeed, Tyr13 has previously been shown to contribute a hydrophobic determinant to receptor binding. The roles of His10, Tyr22 and Tyr29 were investigated by structure-function analysis of hEGF mutant analogues containing individual replacements of each residue. Substitutions with aromatic residues or a leucine at position 10 retained receptor affinities and agonist activities similar to wild-type indicating that an aromatic residue is not essential. Variants with polar, charged or aliphatic substitutions altered in size and/or hydrophobicity exhibited reduced binding and agonist activities. 1-Dimensional 1H NMR spectra of high, moderate and low-affinity analogues at position 10 suggested only minor alterations in hEGF native structure. In contrast, a variety of replacements were tolerated at position 22 or 29 indicating that neither aromaticity nor hydrophobicity of Tyr22 and Tyr29 is required for receptor binding. CD spectra of mutant analogues at position 22 or 29 indicated a correlation between loss of receptor affinity and alterations in hEGF structure. The results indicate that similar to Tyr13, His10 of hEGF contributes hydrophobicity to the receptor binding epitope, whereas Tyr22 and Tyr29 do not appear to be directly involved in receptor interactions. The latter conclusion, together with previous studies, suggests that hydrophobic residues on only one face of the N-terminal beta-sheet of hEGF are important in receptor recognition.  相似文献   

12.
13.
14.
The AIDS-associated Mycoplasma penetrans is capable of inducing its own uptake by non-phagocytic cells. This study investigated the invasion of HeLa cells and its consequences by confocal laser scanning microscopy. Invasion was dependent on the duration of infection and temperature, diminished by inhibiting microfilament assembly with cytochalasin D and almost completely abolished by disorganising microtubules with vinblastine or taxol. After a short infection period (< 20 min), pronounced activation of protein kinase C was detected in host cells, whereas prolonged infection resulted in intensive vacuolation of the host cells and a pronounced increment in intracellular organic peroxide levels. A marked decrease in the extent of vacuolation was observed when peroxide accumulation was partially prevented by alpha-tocopherol. The possibility that M. penetrans entry into HeLa cells involves the activation of protein kinases and the recruitment of cytoskeleton components is discussed.  相似文献   

15.
16.
The completion of DNA synthesis in yeast is monitored by a checkpoint that requires MEC1 and RAD53. Here we show that deletion of the Saccharomyces cerevisiae G1 cyclins CLN1 and CLN2 suppressed the essential requirement for MEC1 function. Wild-type levels of CLN1 and CLN2, or overexpression of CLN1, CLN2, or CLB5, but not CLN3, killed mec1 strains. We identified RNR1, which encodes a subunit of ribonucleotide reductase, as a high-copy suppressor of the lethality of mec1 GAL1-CLN1. Northern analysis demonstrated that RNR1 expression is reduced by CLN1 or CLN2 overexpression. Because limiting RNR1 expression would be expected to decrease dNTP pools, CLN1 and CLN2 may cause lethality in mec1 strains by causing initiation of DNA replication with inadequate dNTPs. In contrast to mec1 mutants, MEC1 strains with low dNTPs would be able to delay S phase and thereby remain viable. We propose that the essential function for MEC1 may be the same as its checkpoint function during hydroxyurea treatment, namely, to slow S phase when nucleotides are limiting. In a cln1 cln2 background, a prolonged period of expression of genes turned on at the G1-S border, such as RNR1, has been observed. Thus deletion of CLN1 and CLN2 could function similarly to overexpression of RNR1 in suppressing mec1 lethality.  相似文献   

17.
18.
Human cytomegalovirus (HCMV) infection can result in neurological symptoms. In vitro replication of the HCMV was studied in primary cultures of microglial cells from the central nervous systems (CNS) of human embryos. The microglial cells were infected with various amounts of either the AD169 laboratory HCMV strain or a clinical HCMV isolate. A specific cytopathic effect occurred within 24 h and persisted for two months. Immunocytochemical tests for immediate early and late viral antigens done one and three days after the infection demonstrated that 60% to 80% of the microglial cells were infected and that 3% to 8% were the site of viral DNA replication. Kinetic studies showed accumulation of viral particles in the supernatant during the first two weeks after the infection. Prestimulation of the cells by PMA 24 h before the infection was associated with increased release of viral particles and with an increased percentage of cells expressing late viral antigens. The microglial cells of the human embryonic CNS are fully permissive targets for the HCMV. The in vitro HCMV model used in this study may prove useful for investigating the pathophysiology of HCMV encephalitis, in particular after mother-to-fetus transmission of the virus.  相似文献   

19.
The aniA gene of Neisseria gonorrhoeae encodes an outer membrane lipoprotein which is strongly induced when gonococci are grown anaerobically in vitro in the presence of nitrite. Database searches with the amino acid sequence derived from the aniA structural gene revealed significant homologies to copper-containing nitrite reductases from several denitrifying bacteria. We constructed an insertional mutation in the aniA locus of strain MS11 by allelic replacement, to determine whether this locus was necessary for growth in oxygen-depleted environments, and to demonstrate that AniA was indeed a nitrite reductase. The mutant was severely impaired in its ability to grow micro-aerophilically in the presence of nitrite, and we observed a loss in viability over several hours of incubation. No measurable nitrite reductase activity was detected in the aniA mutant strain, and activity in the strain with a wild-type locus was inducible. Finally, we report investigations to determine whether AniA protein is involved in gonococcal pathogenesis.  相似文献   

20.
During recent years, genes controlling mutation in higher eukaryotes have been found to be involved actively in carcinoma regeneration in cells. In this respect, studying the genetic control of mutagenesis becomes a key direction of research into mechanisms responsible for cancer generation. The results of studying interaction of mutations in the HIM and HSM genes, controlling spontaneous and induced mutagenesis in yeasts, and mutations impairing three known pathways of DNA damage repair in this microorganism, are described in this work. It was shown that mutation rev3 completely blocks UV-induced mutagenesis in all mutants studied. On the other hand, mutation rad2 synergistically interacts with mutations him1, hsm1, hsm3, hsm6, and hsm2, thus enhancing the frequency of UV-induced mutagenesis in double mutants multiple times. Mutations him2 and him3 manifested epistatic interaction with mutation rad2. With mutation rad54, the interaction was epistatic for mutations him1 and hsm2 and was additive for mutations hsm1, him2, and him3. On the basis of the data obtained, we developed a scheme for the appearance of mismatch bases in the process of repair of UV-induced DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号