首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses the issue of energy efficiency for error control mechanisms over WPAN systems. An analytical formulation has been developed to study the trade-off between link layer performance and energy consumption for two types of error control schemes: pure ARQ and type II hybrid ARQ protocol. An MC-CDMA-based system is considered. First of all, the analysis has been used to compare different error recovery schemes from the energy efficiency point of view. Moreover, it has been found that, for any channel conditions, there exists an optimal value of the transmit power that maximizes the energy efficiency. The paper also shows how this result can be used to design the power control of an energy efficient CDMA-based communication system. Mauro De Sanctis received the “Laurea' degree in Telecommunications Engineering from the University of Roma “Tor Vergata' in 2002. He is currently a Ph.D. Student and Assistant Professor in the Department of Electronics Engineering of the same University. He is involved in the DAVID (DAta and Video Interactive Distribution) satellite mission of the ASI (Italian Space Agency); his research is funded by the ASI. He is also involved in the MAGNET (My personal Adaptive Global NET) European FP6 integrated project and in the SatNEx European network of excellence. He worked on Italian national research projects on satellite-terrestrial systems integration such as SHINES (Satellite and HAP Integrated NEtworks and Services) and CABIS (CDMA for Broadband mobile terrestrial-satellite Integrated Systems). On autumn 2004 he joined the CTIF (Center for TeleInFrastructure), a research center focusing on modern telecommunications technologies located at the University of Aalborg (Denmark). His main areas of interest are: integration of different satellite networks, stratospheric platforms and terrestrial networks in a multi-layered fashion, internetworking and resource management in satellite systems and energy efficiency of WPAN systems. Simone Quaglieri received the “Laurea' degree cum laude in Telecommunications Engineering from the University of Roma “Tor Vergata', Italy, in 2004. His thesis, concerning the study of an analytic model for the Raman amplifier in optical systems with high bit rate, has been developed in the same University. During 2002 he worked as stagiaire on the design and development of optical submarine systems at the Elettra company (Telecom Italia group, Italy). He is joining the IRIS (Innovative Radio Integrated Systems) group at the University of Roma “Tor Vergata' as Research Engineer, where he is working on MC-CDMA based technology in the frame of the MAGNET (My Adaptive Global NETwork) European project. He is also working on error recovery mechanisms over satellite systems, and his research is funded by the EC in the frame of the SatNEx (Satellite Network of Excellence) European project. Ernestina Cianca graduated cum laude in Electronics Engineering in 1997 at the University of L'Aquila. She was with Italtel/Siemens (L'Aquila) from 1997 to 1998. She got her Ph.D. degree from the University of Rome Tor Vergata (URTV). The thesis work was on power management in CDMA-based satellite systems. She has been employed by the University of Aalborg, Denmark, in the Wireless Networking Groups (WING), as Research engineer (2000–2001) and as Assistant Professor (2001–2003). In particular, from Sept. 2002 she has been Technical Manager of Aalborg University for the IST-STRIKE project. She is currently Assistant Professor in Telecommunications at the URTV (Dpt. of Electronics Engineering), teaching DSP, Information and Coding. Her research mainly concerns wireless access technologies (CDMA and MIMO-OFDM-based systems), in particular, Radio Resource Management at PHY/MAC layer, ARQ/HARQ, TCP-IP issues over wireless links, integration of terrestrial and satellite systems. She has been the vice-coordinator of the following national research programs: CABIS, on CDMA integrated mobile systems (2000-2002) and SHINES, on satellite-HAP integrated networks for multimedia applications co-financed by MIUR (2002–2004). She is currently working on various European Projects: EU FP6 IP MAGNET (My personal Adaptive Global NET); EU ASIA LINK EAGER-NetWIC (Euro-Asian Network for Strengthening Graduate Education and Research in Wireless Communications); EU Network of excellence NEXWAY. She is author of about 40 papers, on international journals/transactions and proceedings of international conferences. Marina Ruggieri graduated in Electronics Engineering in 1984 at the University of Roma. She was: with FACE-ITT and GTC-ITT (Roanoke, VA) in the High Frequency Division (1985–1986); Research and Teaching Assistant at the University of Roma Tor Vergata (URTV) (1986–1991); Associate Professor in Telecommunications at the University of L'Aquila (1991–1994). Since November 2000 she is Full Professor in Telecommunications at the URTV (Dpt. of Electronics Engineering), teaching DSP, Information and Coding. In 1999 she has been appointed member of the Board of Governors of the IEEE AES Society (2000–2002) and re-elected for the period 2003–2005. Her research mainly concerns space communications and navigation systems (in particular satellites) as well as mobile and multimedia networks. She is the Principal Investigator of: satellite scientific communications missions (DAVID, WAVE) of ASI; national research programs (CABIS) on CDMA integrated mobile systems (2000–2002) and on satellite-HAP integrated networks for multimedia applications (SHINES), co-financed by MIUR (2002–2004). She co-ordinates the URTV Unit in various European Projects: EU FP6 IP MAGNET (My personal Adaptive Global NET); EU ASIA LINK EAGER-NetWIC (Euro-Asian Network for Strengthening Graduate Education and Research in Wireless Communications); EU Network of excellence NEXWAY; GALILEO JU 1st Call – July 2003: VERT (VEhicular Remote Tolling); and in the ASI program on V-band payloads (TRANSPONDERS). She is member of the Editorial Board of Wireless Personal Communications – an International Journal (Kluwer). She was awarded the 1990 Piero Fanti International Prize and she had a nomination for the Harry M. Mimmo Award in 1996 and the Cristoforo Colombo Award in 2002. She is author of about 170 papers, on international journals/transactions and proceedings of international conferences, book chapters and books.  相似文献   

2.
Satellite Navigation and Communications: An Integrated Vision   总被引:1,自引:0,他引:1  
The paper addresses advanced layered architectures for the development of integration scenarios between satellite navigation and communications systems and services. This synercic cooperation represents – in author's vision – the core of future global networks. The concept of integration and its translation into an integrated network is displayed, together with examples of possible architectures for navigation-communications applications. In this frame, the paper addresses also the possible exploitation of stratospheric platforms (HAP) as permanent and on-demand blocks concurring to the effective deployment of the integrated vision. Marina Ruggieri graduated in Electronics Engineering in 1984 at the University of Roma. She was: with FACE-ITT and GTC-ITT (Roanoke, VA) in the High Frequency Division (1985–1986); Research and Teaching Assistant at the University of Roma Tor Vergata (RTV) (1986–1991); Associate Professor in Telecommunications at Univ. of L'Aquila (1991–1994) and at the University of RTV (1994–2000). Since November 2000 she is Full Professor in Telecommunications at the RTV (Faculty of Engineering), teaching DSP, Information and Coding. Since 2003 she directs a Master in “Advanced Satellite Communications and Navigation Systems” at RTV.Since 1999 she has been appointed member of the Board of Governors of the IEEE AES Society.Her research mainly concerns space communications and navigation systems (in particular satellites) as well as mobile and multimedia networks.She is the Principal Investigator of satellite scientific communications missions (DAVID, WAVE) of ASI, national research programs (CABIS) on CDMA integrated mobile systems and on satellite-HAP integrated networks for multimedia applications (SHINES), co-financed by MIUR. She co-ordinates RTV Unit in various European Projects: EU FP6 IP MAGNET (My personal Adaptive Global NET); EU ASIA LINK EAGER-NetWIC (Euro-Asian Network for Strengthening Graduate Education and Research in Wireless Communications); EU Network NEXWAY; GALILEO JU 1st Call: VERT (VEhicular Remote Tolling); and in the ASI program on V-band payloads (TRANSPONDERS).She is Editor of the IEEE Transactions on AES for “Space Systems”, Chair of the IEEE AES Space Systems Panel. Since 2002, she is co-chair of Track 2 “Space Missions, Systems, and Architecture” of the AES Conference; she has been re-appointed in the IEEE Judith A. Resnik Award Committee for 2004; she has been member of TPC for PLANS 2004.She was awarded the 1990 Piero Fanti International Prize and she had a nomination for the Harry M.Mimmo Award in 1996 and the Cristoforo Colombo Award in 2002.She is author of about 220 papers, on international journals/transactions and proceedings of international conferences, book chapters and books.She is an IEEE Senior Member (S'84-M'85-SM'94).  相似文献   

3.
Broadband Fixed Wireless Access (BFWA) systems represent a potential technological foundation for the Fourth Generation of Wireless Mobile Communication Systems (4G) as they can replace wired broadband and, with sufficient widespreading deployment, can significantly cut into the usage of cellular networks in many areas. In this context, the seamless interworking of Wireless Metropolitan Area Network (WMAN) and Wireless Local Area Network (WLAN) technologies is an efficient solution to provide the indoor extension of BFWA systems coverage, which would largely contribute to their success and penetration in the market. In this paper, we introduce a novel Access Point (AP), called WMAN/WLAN AP (WWAP), which essentially integrates in a compact device a WMAN Subscriber Station (SS) and a WLAN AP in order to extend the WMAN coverage in-house and to guarantee the end-to-end Quality of Service (QoS). Besides the technical features, the market trends and the usage scenarios where the WWAP might be a cost-effective and a very efficient solution are outlined. Finally, simulation results are carried out in order to demonstrate the effectiveness of the proposed AP. Simone Frattasi was born in Rome, Italy, on December 13, 1977. He received his B.Sc. and M.Sc. degrees from the University of Rome Tor Vergata, Italy, in 2001 and 2002, respectively. He has been employed by the University of Aalborg, Denmark, in the Wireless Networking Group (WING) as Research engineer (2002–2004), working on the IST-STRIKE (Spectrally Efficient Fixed Wireless Network based on Dual Standards) and VeRT (Vehicular Remote Tolling) projects. He is currently a Ph.D. student in the Center for TeleInFrastruktur (CTIF), Aalborg University, working on the JADE (Joint Advanced Development Enabling 4G) project, a joint cooperation of CTIF and SAMSUNG. His research interests mainly concern the Fourth Generation of Wireless Mobile Communication Systems (4G), in particular, heterogeneous services and architectures, clustering algorithms and MAC protocols related to the issues of cooperation and relaying in cellular extended short-range communication systems, hybrid and cooperative location techniques, QoS and ARQ/HARQ. Ernestina Cianca graduated cum laude in Electronics Engineering in 1997 at the University of L'Aquila. She was Italtel/Siemens (L'Aquila) from 1997 to 1998. She got her Ph.D. degree from the University of Rome Tor Vergata (URTV). The thesis work was on power management in CDMA-based satellite systems. She has been employed by the University of Aalborg, Denmark, in the Wireless Networking Group (WING), as Research engineer (2000–2001) and as Assistant Professor (2001–2003). She is currently Assistant Professor in Telecommunications at the URTV (Department of Electronics Engineering), teaching DSP, Information and Coding. Her research mainly concerns wireless access technologies (CDMA and MIMO-OFDM-based systems), in particular, Radio Resource Management at PHY/MAC layer, ARQ/HARQ, TCP-IP issues over wireless links, integration of terrestrial and satellite systems. She has been the vice-coordinator of the following national research programs: CABIS, on CDMA integrated mobile systems (2000–2002) and SHINES, on satellite-HAP integrated networks for multimedia applications co-financed by MIUR (2002–2004). She is currently working on various European Projects. She is author of about 40 papers, on international journals/transactions and proceedings of international conferences. Ramjee Prasad was born in Babhnaur (Gaya), Bihar, India, on July 1, 1946. He is now a Dutch Citizen. He received his B.Sc. (Eng) degree from Bihar Institute of Technology, Sindri, India, and his M.Sc. (Eng) and Ph.D. degrees from Birla Institute of Technology (BIT), Ranchi, India, in 1968, 1970 and 1979, respectively. Since June 1999, Dr. Prasad has been with Aalborg University, where currently he is Director of the Center for TeleInFrastruktur (CTIF), and holds the chair of wireless information and multimedia communications. He is the coordinator of the European Commission Sixth Framework Integrated Project MAGNET (My personal Adaptive Global NET). He was involved in the European ACTS project FRAMES (Future Radio Wideband Multiple Access Systems) as a DUT project leader. He is a project leader of several international, industrially funded projects. He has published over 500 technical papers, contributed to several books, and has authored, coauthored, and edited eleven books. He has served as a member of advisory and program committees of several IEEE international conferences. In addition, Dr. Prasad is the coordinating editor and editor-in-chief of the Kluwer International Journal on Wireless Personal Communications and a member of the editorial board of other international journals, including the IEEE Communications Magazine and IEE Electronics Communication Engineering Journal. Dr. Prasad is also the founding chairman of the European Center of Excellence in Telecommunications, known as HERMES. He is a fellow of IEE, a fellow of IETE, a senior member of IEEE, a member of The Netherlands Electronics and Radio Society (NERG), and a member of IDA (Engineering Society in Denmark). Dr. Prasad is the advisor of several multinational companies.  相似文献   

4.
A Wireless Personal Area Network (WPAN) provides wireless networking among proximate devices, usually carried by an individual. Bluetooth is a first instance of the WPAN technology. The basic networking entity in Bluetooth is a piconet. Several piconets (WPANs) can be interconnected into a scatternet, which can be considered as an extendable multi-hop ad hoc networking structure. Since Bluetooth operates in the unlicensed ISM band, each piconet uses pseudorandom frequency hopping. If collocated piconets use the same channel simultaneously, the piconets interfere with each other and the transmitted packets are lost in collisions. This interference is termed self-interference. The piconets that are networked into scatternet exhibit spatial overlapping and naturally produce multi-piconet self-interference. The collisions cause retransmissions and increase the energy spent per data portion, which results in energy-inefficient operation. To tackle this problem, in our previous work we have proposed a self-interference avoidance (SIA) mechanism. However, this basic SIA mechanism is oblivious with respect to the physical topology and does not account for the mitigation of self-interference due to the propagation effects. Furthermore, the basic SIA mechanism relies on the assumption that all piconets are using packets of identical and fixed length. In this paper we will generalize the SIA mechanism to overcome the stated restrictions. We propose the adaptive SIA (A-SIA) algorithm, which adapts the SIA algorithm to the actual interference. The simulation results show that A-SIA largely retains the energy gain offered by the SIA algorithm, while significantly improving the goodput. We also design an instance of the SIA mechanism that operates with variable-length packets, referred as generalized SIA (G-SIA) algorithm. Our simulation results show that the G-SIA algorithm offers good performance in terms of goodput and energy efficiency, but the goodput is degraded if inappropriate segmentation/reassembly policy is used. Petar Popovski received the Dipl.-Ing. in electrical engineering and M.Sc. in communication engineering from the Faculty of Electrical Engineering, Sts. Cyril and Methodius University, Skopje, Macedonia, in 1997 and 2000, respectively and a Ph.D. degree from Aalborg University, Denmark, in 2004. He is currently Assistant Research Professor at the Department of Communication Technology at the Aalborg University. His research interests are focused on wireless ad hoc networks, wireless sensor networks, and high-speed wireless multi-carrier communications. Hiroyuki Yomo received B.S. degree in communication engineering from Department of Communication Engineering, Osaka University, Osaka, Japan, in 1997, and M.S. and Ph.D. degrees in communication engineering from Department of Electronic, Information, and Energy Engineering, Graduate School of Engineering, Osaka University, Osaka Japan, in 1999 and 2002, respectively. From April 2002 to March 2004, he was a Post-doctoral Fellow in Department of Communication Technology, Aalborg University, Denmark. From April 2004 to September 2004, he was working at NEC Corporation, Japan. Since October 2004, he has been an Assistant Research Professor in Center for TeleInfrastructure (CTIF), Aalborg University, Denmark. His research interests include medium access protocols, link-layer techniques, routing protocols, and their interactions in wireless networks. Liljana Gavrilovska received her B.Sc., M.Sc. and Ph.D. from University of Skopje (76), University of Belgrade (85) and University of Skopje (95) respectively. She joined the Faculty of Electrical Engineering, University of Skopje, Republic of Macedonia, where she currently holds positions of Professor at the Institute for Telecommunications, chief of Telecommunications Laboratory and head of CWMC (Center for Wireless and Mobile Communications), working in the area of networking and mobile communications. During 2001–2002 she joined the Centre for PersonKommunikation, Aalborg University, Denmark, where she was holding a position as Associate Research Professor and was involved in several EU (ASAP, PACWOMAN, MAGNET) and national/international projects. She is still working part-time for CTiF, Aalborg University, Denmark. Her major research is concentrated on ad hoc networking, wireless and personal area networks, cross layer optimizations, future mobile systems, traffic analysis and admission techniques. She is a senior member of IEEE and serves as a Chair of the Macedonian Communications Chapter. Ramjee Prasad is a distinguished educator and researcher in the field of wireless information and multimedia communications. During February 1988–May 1999 he has been with the Telecommunications and Traffic-Control Systems Group of Delft University of Technology (DUT), The Netherlands, where he was actively involved in the area of wireless personal and multimedia communications (WPMC). He was head of the Transmission Research Section of International research Centre for Telecommunications Transmission and Radar (IRCTR) and also Founding Program Director of the Centre for Wireless Personal Communications (CWPC). As from June 1999 Ramjee Prasad joined as the Wireless Information Multimedia Communications chair and co-director of Centre for PersonKommunikation at Aalborg University, Denmark. From January 2004 he is Founding Director of the “Centre for Teleinfrastruktur (CTIF)”. He has published over 500 technical papers, and authored and co-edited 15 books about Wireless Multimedia Communications (Artech House). His research interest lies in wireless networks, packet communications, multiple access protocols, adaptive equalisers, spread-spectrum CDMA systems and multimedia communications. Prof. Prasad is the founding chairperson of the European centre of Excellence in Telecommunications known as HERMES Partnership. He is the General Chairman of International Wireless Summit (IWS 2005) to be held in Aalborg, Denmark in September 17–22, 2005. He is a fellow of the IEE, a fellow of IETE, a senior member of IEEE, a member of NERG, and a member of the Danish Engineering Society (IDA). He is advisor to several multinational companies.  相似文献   

5.
This paper discusses what a new paradigm can be in wireless communication systems of the twenty-first century. First, it suggests two directions for the new paradigm; one is “micro- and nano-device communication system” which is the projected scenario considering that the entities in source and destination have been shrinking throughout the history of wireless communication systems. The second direction is “networked robot system”, which emerges as a natural extension of mobile ad hoc networking where the networking is closely related to motion control of robots. Secondly, it shows two interesting research topics, “the new communication protocol design” and “signal processing”, respectively, that arise in the wake of the fusion between the two directions in the novel communication paradigm. Finally, it considers a new science of wireless communications in the twenty-first century. Shinsuke Hara received the B.Eng., M.Eng. and Ph.D. degrees in communications engineering from Osaka University, Osaka, Japan, in 1985, 1987 and 1990, respectively. From April 1990 to March 1997, he was an assistant professor in the Department of Communication Engineering, School of Engineering, Osaka University, and from October 1997 to September 2005, he was an associate professor in the Department of Electronic, Information and Energy Engineering, Graduate School of Engineering, Osaka University. Since October 2005, he has been a professor in the Department of Physical Electronics and Informatics, Graduate School of Engineering, Osaka City University. In addition, from April 1995 to March 1996, he was a visiting scientist at Telecommunications and Traffic Control Systems Group, Delft University of Technology, Delft, The Netherlands. His research interests include wireless communications systems and digital signal processing. Hiroyuki Yomo received B.S. degree in communication engineering from Department of Communication Engineering, Osaka University, Osaka, Japan, in 1997, and M.S. and Ph.D. degrees in communication engineering from Department of Electronic, Information, and Energy Engineering, Graduate School of Engineering, Osaka University, Osaka Japan, in 1999 and 2002, respectively. From April 2002 to March 2004, he was a Post-doctoral Fellow in Department of Communication Technology, Aalborg University, Denmark. From April 2004 to September 2004, he was at Internet System Laboratory, NEC Corporation, Japan. Since October 2004, he has been an Assistant Research Professor in Center for TeleInfrastructure (CTIF), Aalborg University, Denmark. His main research interests are access technologies, radio resource management, and link-layer techniques in the area of short-range communication, cellular network, cognitive radio, and sensor network. Petar Popovski received the Dipl.-Ing. in electrical engineering and M.Sc. in communication engineering from the Faculty of Electrical Engineering, Sts. Cyril and Methodius University, Skopje, Republic of Macedonia, in 1997 and 2000, respectively. He received a Ph.D. degree from Aalborg University, Denmark, in 2004. From 1998 to 2001 he was a teaching and research assistant at the Institute of Telecommunications, Faculty of Electrical Engineering in Skopje. He is currently Assistant Professor at the Department of Communication Technology at the Aalborg University. His research interests are related to the PHY-MAC aspects of wireless protocols, wireless sensor networks, random access protocols, and network coding. Kazunori Hayashi received the B.E., M.E. and Ph.D. degrees in communication engineering from Osaka University, Osaka, Japan, in 1997, 1999 and 2002, respectively. He spent 3 months in 2000 at Aalborg University, Denmark, as a Visiting Scholar. Since 2002, he has been with the Department of Systems Science, Graduate School of Informatics, Kyoto University. He is currently an Assistant Professor there. His research interests include digital signal processing for communications systems.  相似文献   

6.
In this paper we address the problem of faults possibly affecting voters of TMR systems and making them provide incorrect majority data, thus making the adoption of the TMR technique useless. We consequently instantiate the need for self-checking voting schemes and propose a new CMOS self-checking voter that, compared to alternate self-checking solutions, features the advantage of being faster, while requiring comparable power consumption and a small increase in area overhead.José Manuel Cazeaux received his degree in Electronic Engineering from the University of Mar del Plata (Argentina) in 2002. In 2003 he was awarded a MADESS grant and joined the Electronics Department of the University of Bologna, where he is currently working towards his PhD in Electronic Engineering and Computer Science. His research interests are fault modeling, on-line testing and fault-tolerance techniques. He is a IEEE Student Member of the Computer Society.Daniele Rossi obtained the degree in Electronic Engineering from the University of Bologna in 2001. He is currently working towards his PhD in Electronic Engineering and Computer Science at the same University. His research interests include on-line testing and fault-tolerance techniques, with particular focus on coding techniques for fault tolerant and low power buses and for crosstalk effects minimization. He is a Member of the IEEE Computer Society.Cecilia Metra obtained the degree in Electronic Engineering and the PhD degree in Electronic Engineering and Computer Science from the University of Bologna (Italy). Currently, she is an Associate Professor in Electronics at the University of Bologna (Italy). From 1998 to 2001, she has also been Visiting Scholar at the University of Washington, Seattle (USA), while in 2002 she has been Visiting Faculty Consultant for Intel, Santa Clara (CA). She is General Co-Chair of “The IEEE Int. Symposium on Defect and Fault Tolerance in VLSI Systems” 2005 and Program Co-Chair of the “IEEE Int. On-Line Testing Symposium” 2005. She has been Program Co-Chair of the “IEEE Int. On-Line Testing Symposium”, 2004, 2003, Program Co-Chair/General Co-Chair of the “IEEE Int. On-Line Testing Workshop”, 2002, 2001 and “The IEEE Int. Symposium on Defect and Fault Tolerance in VLSI Systems”, 1998, 1999. She is/has been Member of the Technical Program Committee of several International Conferences. She is an Associate Editor for the IEEE Transactions on Computers and a Member of the Editorial Board of the Journal of Electronic Testing: Theory and Applications (Springer) and of the Microelectronics Journal (Elsevier Science). Her research interests are in the field of fault-tolerance, with particular emphasis on modular redundant systems, on-line testing techniques, error recovery and correction, fault analysis and modeling, concurrent diagnosis. She is a Member of the IEEE Computer Society.  相似文献   

7.
Multirating has been recently proposed to reduce the frequency rate of the first integrator(s) of a single-loop, or the first stage(s) of a cascade, Sigma-Delta modulator (SDM). This is a promising technique for the design of high speed, low-power modulators, as the first integrator (or stage) in the chain primarily determines the performances of the modulator, as well as its power consumption. This paper presents the first implementation of a 2nd-order multirate SDM, showing different circuit solutions. The experimental results obtained with a prototype in a standard 0.6 μm CMOS technology shows that different clock rates can be selected for each integrator of a SDM. Alfredo Pérez Vega-Leal was born in Seville, Spain. He received the Telecommunications Engineering and Ph.D. degrees from the University of Seville, Seville, Spain, in 1998 and 2003, respectively. Since 1995, he has been with the Department of Electronic Engineering, School of Engineering, University of Seville, as research student and became an Associate Professor in 1999. His research interests are related to low-voltage low-power analog circuit design, A/D and D/A conversion. Francisco Colodro was born in Peal de Becerro (Jaén), Spain, in 1968. He received the Ingeniero de Telecomunicación degree from the University of Vigo, Vigo, Spain, in 1992, and the Ph.D. degree from the University of Sevilla, Sevilla, Spain, in 1997. In 1992 he joined the Department of Electronics Engineering, University of Sevilla, where he is currently and Associate Professor. His research interests are in the architectural study of Σ Δ modulators, the implementation of ADCs based on Σ Δ modulators, and application of electronic circuits and systems to communication. Marta Laguna was born in Seville, Spain. She received the Telecommunications Engineering degree from the University of Seville in 2002. She is currently working toward the Ph.D. degree. Her doctoral work focuses on the design of continuous-time sigma-delta modulators. Since 2001, she has been with the Department of Electronic Engineering, School of Engineering, University of Seville, as research student and became an assistant teacher in 2004. Her research interests are high-speed analog-to-digital converters and sigma-delta modulators. Antonio Torralba (M'89–SM'02) was born in Sevilla, Spain, in 1960. He received the electrical engineering and Ph.D. degrees from the University of Sevilla in 1983, and 1985, respectively. Since 1983 he has been with the Department of Electronics Engineering, School of Engineering, University of Sevilla, where he has been Associate Professor in 1987, and Full Professor since 1996, leading a research group on mixed signal design. In 1999 he made a short stay at the Department of Electrical Engineering, NMSU, and he is presently in the Department of Electrical Engineering, TAMU for a Sabbatical stay. His interests include low-voltage analog circuits and systems, analog to digital conversion, Σ Δ modulators, and electronic circuits and systems with application to control and communication. In these fields he has published around 40 journal papers and more than 100 conference papers, and he holds 2 international patents.  相似文献   

8.
This paper presents a new CMOS fully differential current feedback operational amplifier (FDCFOA). The proposed CMOS realization of the FDCFOA is based on a novel class AB fully differential buffer circuit. Besides the proposed FDCFOA circuit is operating at supply voltages of ±1.5 V, it has a total standby current of 400 A. The applications of the FDCFOA to realize variable gain amplifier, fully differential integrator, and fourth order fully differential maximally flat low pass filter are given. The fourth order filter provides 8 dB gain and a bandwidth of 4.3 MHz to accommodate the wideband CDMA standard. The proposed FDCFOA and its applications are simulated using CMOS 0.35 m technology.Soliman A. Mahmoud was born in Cairo, Egypt, in 1971. He received the B.Sc. degree with honors, the M.Sc. degree and the Ph.D. degree from the Electronics and Communications Department, Cairo University—Egypt in 1994, 1996 and 1999 respectively. He is currently an Assistant Professor at the Electrical Engineering Department, Cairo University, Fayoum-Campus. His research interests include low voltage analog CMOS circuit design, filtering and applications suitable for VLSI.Inas Awad was born in Cairo, Egypt, in 1971. She received the Bachelor, the M.Sc. and the Ph.D. degrees in Electronics and Communications from Cairo University in 1994, 1997 and 2000, respectively. In 1995, she joined the department of Electronics and Communications, Cairo University, Fayoum-Campus as a teaching assistant and now she is an Assistant Professor at the same department. Her primary research interest is in analog circuits with particular emphasis on current-mode approach and low-voltage low-power CMOS designs.  相似文献   

9.
10.
Switched current (SI) circuits use analogue memory cells as building blocks. In these cells, like in most analogue circuits, there are hard-to-detect faults with conventional test methods. A test approach based on a built-in dynamic current sensor (BIDCS), whose detection method weights the highest frequency components of the dynamic supply current of the circuit under test, makes possible the detection of these faults, taking into account the changes in the slope of the dynamic supply current induced by the fault. A study of the influence of these faults in neighbouring cells helps to minimize the number of BICS needed in SI circuits as is shown in two algorithmic analogue-to-digital converters. Yolanda Lechuga received a degree in Industrial Engineering from the University of Cantabria (Spain) in April 2000. Since then, she has been collaborating with the Microelectronics Engineering Group at the University of Cantabria, in the Electronics Technology, Systems and Automation Engineering Department. Since October 2000 she has been a post-graduate student, to be appointed as lecturer at this university, where she is working in her Ph.D. She is interested in supply current test methods, fault simulation, BIST and design for test of mixed signal integrated circuits. Román Mozuelos received a degree in Physics with electronics from the University of Cantabria, Spain. From 1991 to 1995 he was working on the development of quartz crystal oscillators. Currently, he is a Ph.D. student and an assistant teacher at the University of Cantabria in the Department of Electronics Technology. His interests include mixed-signal design and test, fault simulation, and supply current monitoring. Miguel A. Allende received his graduate degree in 1985 and Ph.D. degree in 1994, both from the University of Cantabria, Santander, Spain. In 1996, he became an Assistant Professor of Electronics Technology at the same Institution, where he is a member of the Microelectronics Engineering Group at the Electronics Technology, Systems and Automation Engineering Department in the Industrial and Telecommunication Engineering School. His research interests include design of VLSI circuits for industrial applications, test and DfT in digital VLSI communication circuits, and power supply current test of mixed, analogue and digital circuits. Mar Martínez received her graduate degree and Ph.D. from the University of Cantabria (Spain) in 1986 and 1990. She has been Assistant Professor of Electronic Technology at the University of Cantabria (Spain) since 1991. At present, she is a member of the Electronics Technology, Systems and Automation Engineering Department in the Industrial and Telecommunication Engineering School. She has participated in several EU and Spanish National Research Projects. Her main research interest is mixed, analogue and digital circuit testing, using techniques based on supply current monitoring. She is also interested in test and design for test in digital VLSI circuits. Salvador Bracho obtained his graduate degree and Ph.D. from the University of Seville (Spain) in 1967 and 1970. He was appointed Professor of Electronic Technology at the University of Cantabria (Spain) in 1973, where, at present, he is a member of the Electronics Technology, Systems and Automation Engineering Department in the Industrial and Telecommunication Engineering School. He has participated, as leader of the Microelectronics Engineering Group at the University of Cantabria, in more than twenty EU and Spanish National Research Projects. His primary research interest is in the area of test and design for test, such as full scan, partial scan or self-test techniques in digital VLSI communication circuits. He is also interested in mixed-signal, analogue and digital test, using methods based on power supply current monitoring. Another research interest is the design of analogue and digital VLSI circuits for industrial applications. Prof. Bracho is a member of the Institute of Electrical and Electronic Engineers.  相似文献   

11.
A fast converging adaptive minimum-mean-squared-error (MMSE) multiuser detector is proposed for direct-sequence code-division multiple-access (DS-CDMA) systems with severe near-far problem where the convergence rate of adaptive MMSE detectors for distinct users can be very different. It is shown that by successively cancelling the interference signals of strong power users, the convergence rate of the proposed detectors for weak power users can be significantly increased, which helps to reduce the length of training sequence for tracking. It is also shown that the order of cancellation and several important parameters required for interference cancellation can be determined from the convergence behavior of the proposed detector. Numerical results are presented to show that the proposed detector offers improved performance in various DS-CDMA environments.Zhiwei Mao received the B.Sc. degrees from Beijing University of Posts and Telecommunications (BUPT), Beijing, China in 1996 and 1999, respectively. Since 2000, she had been a Research Assistant and graduate student in the Department of Electrical and Coumputer Engineering, University of Victoria, Victoria, BC, Canada. She received the Ph.D. degree in electrical engineering in 2003. Currently, she is an Assistant Professor at Lakehead University, Thunder Bay, Ontario, Canada.Her research interests include wireless communications, multiuser detection, digital communications and digital singal processing.Vijay K. Bhargava received the B.Sc., M.Sc., and Ph.D. degree from Queens University, Kingston, ON, Canada in 1970, 1972 and 1974 respectively.Currently, he is a Professor and Head of the Department of Electrical and Computer Engineering at the University of British Columbia, Vancouver, Canada. Previously he was with the Univeristy of Victoria (1984–2003) and with Concordia University in Montréal (1976–1984). He is a co-author of the book Digital Communications by Satellite (New York: Wiley, 1981), co-editor of Reed-Solomon Codes and Their Applications (New York: IEEE, 1994) and co-editor of Communications, Information and Network Security (Boston: Kluwer, 2002). His research interest are in wireless communications.Dr. Bhargava is a Fellow of the B.C. Advanced Systems Institute, Engineering Institute of Canada (EIC), the IEEE, the Canadian Academy of Engineering and the Royal Society of Canada. He is a recipient of the IEEE Centennial Medal (1984), IEEE Canadas McNaughton Gold Medal (1995), the IEEE Haraden Pratt Award (1999), the IEEE Third Millennium Medal (2000), IEEE Graduate Teaching Award (2002), and the Eadie Medal of the Royal Society of Canada (2004).Dr. Bhargava is very active in the IEEE and was nominated by the IEEE Board of Director for the Office of IEEE President-Elect. Currently he serves on the Board of Communications Society. He is an Editor for the IEEE Transactions on Wireless Communications. He is a Past President of the IEEE Information Theory Society.  相似文献   

12.
In space-division multiple access (SDMA), different beamforming or space-domain precoding techniques can be applied. We investigate two different space-domain precoding methods, the maximum capacity (MC) and the minimum mean square error (MMSE) precoders, for the downlink channel. It is shown that the MMSE precoding, which is practically implementable, can provide a reasonable performance in terms of the capacity and error probability, while the MC precoding is not practical (although it is optimum in terms of the capacity). Space-domain precoding methods are also applied to code-division multiple access (CDMA) systems.This work was supported by the HY-SDR Research Center at Hanyang University, Seoul, Korea, under the ITRC Program of MIC, Korea.Jinho Choi was born in Seoul, Korea. He recieved the B.E. degree (magna cum laude) in electronics engineering from Sogang University in 1989 and the M.S.E. and Ph.D. degree in electrical engineering from the Korea Advanced Institute of Science and Technology in 1991 and 1994, respectively. Currently he is a Senior Lecturer in the School of Electrical Engineering and Telecommunications,University of New South Wales, Australia. Dr. Choi received the 1999 Best Paper Award of Signal Processing from EURASIP.Seungwon Choi received the B.S. degree from Hanyang University, Seoul, Korea, in 1980 and the M.S. degree from Seoul National University, Seoul, in 1982, both the electronic engineering. He received the M.S. degree in computer engineering in 1985 and the Ph.D degree in electrical engineering in 1988 from Syracuse University, Syracuse, NY.From 1982 to 1984, he was with LG Electronics Co. Ltd., Seoul, where he helped developed the 8-mm camcorder system. From 1988 to 1989, he was with the Department of Electrical and Computer Engineering, Syracuse University, as an Assistant Professor. In 1989, he joined the Electronics and Telecommunications Research Institute, daejeon, Korea, where he developed the adaptive algorithm for real-time application in secure telephone systems. From 1990 to 1992, he was with yhe Communication Research Laboratory, Tokyo, Japan, as a science and Technology Agency Fellow, developing adaptive antenna array system and adaptive equalizing filters for applications in land-mobile communications. He joined Hanyang University, Seoul, in 1992 as an Assistant Professor. He is a Professor in the School of Electrical and Computer Engineering, Hanyang University. His research interests include digital communications and adaptive signal processing with a recent focus on the real-time implementation of smart antenna system for 3G mobile communication system.  相似文献   

13.
In this paper, a new algorithm for subcarrier and power allocation for the downlink of multiuser OFDM transmission is presented. The proposed algorithm is more stable and it offers a lower complexity and better performance than previous existing algorithms. Khalid El Baamrani was born in Ouarzazate, Morocco in 1976. He received the License degree (equiv. B.A.) in electronic engineering from the University of Cadi Ayyad, Marrakech, Morocco, in 1998, the D.E.S.A. (equiv. M.A) in electrical engineering from the University of CadiAyyad, Marrakech, Morocco, in 2000, the certificate in engineering of the data-processing networks and telecommunications from the national institute of posts and telecommunications, Rabat, Morocco in 2002 and the Ph.D. degree at University of Cadi Ayyad, Marrakech, Morocco in 2005. His research interests include multicarrier modulation, communication theory, multiuser information theory, OFDM and DSL systems. Victor P. Gil Jiménez received the B. Eng. in Telecommunications with honors from University of Alcalá in 1998 and the M. Eng. in Telecommunications and the PhD. degree both from the University Carlos III de Madrid in 2001 and 2005, respectively. He is with the Department of Signal Theory and Communications at the University Carlos III de Madrid as an Assistant Professor. He worked at the Spanish Antarctica Base in 1999 as Communications Staff. He visited University of Leeds and Chalmers Technical University in 2003 and 2004 respectively. His research interests include multicarrier communications and signal processing for wireless systems. Ana Garcia Armada received the Telecommunication Engineer degree and the Ph.D in Electrical Engineering both from the Polytechnic University of Madrid (Spain) in 1994 and 1998, respectively. She is currently working as an Associate Professor at the University Carlos III de Madrid, where she has occupied several management positions. She has participated in several national and international research projects, most of them related to OFDM. She is coauthor of four books on wireless communications and signal processing. She has published 13 papers in international journals and more than 40 papers in conferences. She has contributed to international organizations such as ITU and ETSI. She has performed research stays in ESA-ESTEC, Kansas University, Stanford University and Bell Labs. Her research interests are simulation of communication systems, multicarrier and MIMO techniques.  相似文献   

14.
In this work Walsh–Hadamard, QS, Lin–Chang, LCZ-GMW, ZCZ sets of sequences are compared. The comparison is accomplished by analyzing the conventional receiver (Rake) and a parallel interference canceller (PIC) receiver performance using each one of these sequence sets in a multipath Rayleigh fading channel and similar system loads in quasi-synchronous condition.André Seichi Ribeiro Kuramoto received the B.S. degree in Electrical Engineering from UEL, Londrina State University (Brazil) in 2002. He is currently an M.Sc. student at EPUSP – Escola Politécnica of University of São Paulo (Brazil) and his current research interests are quasi-synchronous DS-CDMA systems and code sequences analysis.Taufik Abrão received the B.S., M.Sc. and Ph.D., all in Electrical Engineering from EPUSP – Escola Politécnica of University São Paulo (Brazil), in 1992, 1996, and 2001, respectively. He is currently an Adjunct Professor at the Electrical Engineering Department of UEL, State University of Londrina (Brazil) and his current research interests are CDMA systems, multi-user detection, and code sequences analysis.Paul Jean Etienne Jeszensky received the B.S., M.S. and Ph.D., all in Electrical Engineering from EPUSP – Escola Politécnica of University of São Paulo (Brazil), in 1972, 1981, and 1989, respectively. Since 1990, he has been with EPUSP where he is a full-time Associate Professor and Researcher in Communication Systems. He was visiting professor at UPC – Universitat Politécnica de Catalunya, Barcelona (Spain) in 1995 and at TUB – Technical University of Budapest (Hungary) in 2001. He is author of the book Sistemas Telefônicos (in Portuguese), Editora Manole, 2003, and his current research interests include CDMA systems, multi-user detection, code sequences analysis and related topics.  相似文献   

15.
In this paper, we consider the transport capacity of ad hoc networks with a random flat topology under the present support of an infinite capacity infrastructure network. Such a network architecture allows ad hoc nodes to communicate with each other by purely using the remaining ad hoc nodes as their relays. In addition, ad hoc nodes can also utilize the existing infrastructure fully or partially by reaching any access point (or gateway) of the infrastructure network in a single or multi-hop fashion. Using the same tools as in [9], we show that the per source node capacity of Θ(W/log(N)) can be achieved in a random network scenario with the following assumptions: (i) The number of ad hoc nodes per access point is bounded above, (ii) each wireless node, including the access points, is able to transmit at W bits/sec using a fixed transmission range, and (iii) N ad hoc nodes, excluding the access points, constitute a connected topology graph. This is a significant improvement over the capacity of random ad hoc networks with no infrastructure support which is found as in [9]. We also show that even when less stringent requirements are imposed on topology connectivity, a per source node capacity figure that is arbitrarily close to Θ(1) cannot be obtained. Nevertheless, under these weak conditions, we can further improve per node throughput significantly. We also provide a limited extension on our results when the number of ad hoc nodes per access point is not bounded.Ulaş C. Kozat was born in 1975, in Adana, Turkey. He received his B.Sc. degree in Electrical and Electronics Engineering from Bilkent University, Ankara, Turkey and his M.Sc. in Electrical Engineering from The George Washington University, Washington D.C. in 1997 and 1999 respectively. He has received his Ph.D. degree in May 2004 from the Department of Electrical and Computer Engineering at University of Maryland, College Park. He has conducted research under the Institute for Systems Research (ISR) and Center for Hybrid and Satellite Networks (CSHCN) at the same university. He worked at HRL Laboratories and Telcordia Technologies Applied Research as a research intern. His current research interests primarily focus on wireless and hybrid networks that span multiple communication layers and networking technologies. Mathematical modelling, resource discovery and allocation, vertical integration of wireless systems and communication layers, performance analysis, architecture and protocol development are the main emphasis of his work. E-mail: kozat@isr.umd.eduLeandros Tassiulas (S′89, M′91) was born in 1965, in Katerini, Greece. He obtained the Diploma in Electrical Engineering from the Aristotelian University of Thessaloniki, Thessaloniki, Greece in 1987, and the M.S. and Ph.D. degrees in Electrical Engineering from the University of Maryland, College Park in 1989 and 1991 respectively.He is Professor in the Dept. of Computer and Telecommunications Engineering, University of Thessaly, Greece and Research Professor in the Dept. of Electrical and Computer Eng and the Institute for Systems Research, University of Maryland College Park since 2001. He has held positions as Assistant Professor at Polytechnic University New York (1991–95), Assistant and Associate Professor University of Maryland College Park (1995–2001) and Professor University of Ioannina Greece (1999–2001).His research interests are in the field of computer and communication networks with emphasis on fundamental mathematical models, architectures and protocols of wireless systems, sensor networks, high-speed internet and satellite communications.Dr. Tassiulas received a National Science Foundation (NSF) Research Initiation Award in 1992, an NSF CAREER Award in 1995 an Office of Naval Research, Young Investigator Award in 1997 and a Bodosaki Foundation award in 1999 and the INFOCOM′94 best paper award. E-mail: leandros@isr.umd.edu  相似文献   

16.
We investigate space-frequency block coding for OFDM systems with multiple transmit antennas, where coding is applied in the frequency domain (OFDM carriers) rather than in the time domain (OFDM symbols). In particular we consider Alamouti's code, which was shown to be the optimum block code for two transmit antennas and time domain coding. We show that the standard decoding algorithm results in significant performance degradation depending on the frequency-selective nature of the transmission channels, such that a low coherence bandwidth results in a huge degradation. The optimum decoding algorithm that alleviates this problem is the maximum-likelihood decoder for joint symbol detection. We present a performance analysis for the investigated space-frequency decoders in terms of the achievable BER results. Furthermore we compare space-time and space-frequency coding and discuss the respective advantages and drawbacks of the different decoding algorithms in terms of their complexity. It should be noted that for the space-time approach we introduce the so-called matched-filter receiver, which shows significantly lower complexity compared to the maximum-likelihood decoder known from literature. The HIPERMAN system serves as an example OFDM system for quantitative comparisons. Andreas A. Hutter received the Dipl.-Ing. (electrical engineering) and the Dr.-Ing. degree from Munich University of Technology (TUM) in 1997 and 2001, respectively. From 1997 to 2000 he was with the research and engineering department (FIZ) of BMW at Munich where he was project leader for the broadband wireless data initiative. In 2000 he was visiting researcher at Stanford University and in 2001 he joined the Swiss Center for Electronics and Microtechnology (CSEM) as senior R&D engineer. His research interests include the characterization of the propagation characteristics of mobile communication channels, signal-processing techniques for multiple antenna systems and the different aspects related to the design of ultra wideband systems. Andreas A. Hutter is co-recipient of the VTC-Fall 1999 best paper award. Selim Mekrazi received his M.Sc. in Digital Communications, Signal Processing and Telecommunications from Université de Rennes 1, Ecole Nationale Supérieure de Télécommunications de Bretagne (ENST Bretagne) and Ecole Supérieure d'Electricité (Sup'Elec), France, in 2003. In October 2003, he joined Eurecom Institue (Sophia-Antipolis, France) where he is currently pursuing his Ph.D in Electrical Engineering. His general interests lie in the areas of information theory, signal processing, digital communications, micro-electronics and public safety systems. Current researches focus on physical layer transmission techniques and implementation aspects for high-throughput, reconfigurable and rapidly deployable systems. Beza Negash Getu was born in Bahir Dar, Ethiopia, on May 27, 1975. From 1992 to 1997, he followed Addis Abeba University and he completed his B.Sc. degree in Electrical Engineering. Following his graduation, he was employed at Bahir Dar University as an assistant lecturer. From June 1998 to August 2000, he studied the Master of Science Program of Delft University of Technology, the Netherlands and obtained his M.Sc. degree in Electrical Engineering. In October 2000, he joined the Antennas and Propagation group of Prof. Dr. Techn. Jorgen Bach Andersen at the Center for Person Kommunikation (CPK) of Aalborg University, Denmark as a Ph.D. student. He worked in the field of Wireless Communications focusing on smart antennas and MIMO systems. The subject are encompasses communication theory, propagation and antenna research with the goal of optimizing link spectral efficiency and bit error rate. During 2002–2003, he spent six months in the Wireless Communications group at CSEM, Neuchatel, Switzerland, working on the same area. Beza N. Getu received the Ph.D. degree from Aalborg University in 2003. Fanny Platbrood received her Dipl.Eng. (M.Sc.EE) Degree in Electrical Engineering from the “Faculté Polytechnique” (Mons-Belgium) in 1996 after having made some research at the University of Rochester (NY-USA) and at the Swiss Federal Institute of Technology (EPFL). She worked as ASIC designer in the VLSI Design Department of Alcatel Bell, Belgium until end 1998. She was more particularly responsible for the ASIC development and testing for ADSL. In fall 1998, she joined the CSEM to work on research and development as an expert in wireless communications. She worked then on the PHY layer development for the WLAN standard HiperLAN Type-2 (H/2). From September 1999 until September 2001, she worked in the ESPRIT SLATS European project where she began first as workpackage leader of the GSM and WCDMA PHY software module development to become later the SLATS project manager for CSEM. In 2001, she was responsible for a UMTS concept study in a receiver structure. Up to end 2003, she worked on the IST SCOUT project on software architectures for re-configurable baseband systems and APIs definition. From 2002 to September 2004, she was responsible for the IST STRIKE project where she worked on Multiple Transmit Multiple Receive (MTMR) coding techniques applied to BFWA systems (HIPERMAN). From 2001 to 2004, she was the technical project manager of the IST PRODEMIS project. From 2003, she is task leader in the IST MAGNET project. She is presently project manager at CSEM and her areas of expertise are in ASIC design, digital and mobile communications. She published conference and magazine papers.  相似文献   

17.
In Wideband direct sequence code division multiple access (WCDMA) same frequency spectrum is shared through all cells simultaneously, as opposed to TDMA which is used for most 2nd generation systems. In a WCDMA system all transmitted signals turn out to be disturbing factors to all other users in the system in the form of interference limiting the system capacity. To suppress the amount of interference, fast and reliable interference controlling algorithms must be employed in next generation systems. In this paper it is shown that antenna arrays with steer able low side lobes can reduce interference in WCDMA can increase the system capacity and output signal to noise ratio of the array processing architecture. The performance metric O/P SNR of an array processing architectures is simulated in an interfering environment to demonstrate the advantage of low side lobe beamforming over adaptive antennas. Rajesh Khanna was born in Ambala, India. He received B.Sc (Engg.) degree in Electronics & Comm. in 1988 from Regional Engineering College, Kurkshetra and M.E degree in 1998 from Indian Institute of Sciences, Bangalore He was with Hartron R&D centre till 1993. Until 1999 he was in All India Radio as Assistant Station Engineer. Presently he is working as Assistant Professor in the department of Electronics & Communication at Thapar Institute of Engineering & Technology, Patiala. He is also pursuing his PhD in the area of adaptive antennas for mobile communication. He has published 12 papers in national and International conferences. Rajiv Saxena was born in Gwalior, India. He received his B.E degree in Electronics and Telecommunication Engineering from Jabalpur University, M.E degree in Elect Engg from Jiwaji University, Gwalior and PhD from University of Roorkee in 1982, 1990 and 1996 respectively. He worked as an engineer in GRASIM and Reliance Textile Industries till 1983. In 1984 he joined Electronics Engineering Department of Madhav Institute of Technology and Sciences, Gwalior as Lecturer. He became Reader in 1990 and Professor in 2002. Presently he is Principal Rustam Ji Institute of Technology, BSF Academy, Tekanpur Distt. – Gwalior (M.P.). He has published more than 53 papers in various national and International Journals and conferences. His research interests include wireless and mobile communication and Digital Signal Processing.  相似文献   

18.
Multicarrier Code Division Multiple Access (MC-CDMA) techniques were originally proposed at mid of 90's for wideband multi-user communications in wireless environments characterized by hostile propagation characteristics. In this work, the design of a MC-CDMA-based infrastructure is considered for VBR broadband indoor connections with real-time asynchronous multiple access. At the present time, Broadband Fixed Wireless Access (BFWA) standards like IEEE 802.16 and HIPERMAN can bring broadband services inside buildings, but indoor access should be conveniently provided by a local area connection. The capability of MC-CDMA of supporting asynchronous multi-user variable-bit-rate (VBR) transmission is exploited jointly with an efficient and real-time Medium Access Control (MAC) strategy in order to allow a significant number of indoor VBR users to transmit information in CDMA modality with different quality of service (QoS) profiles. Different classes of users are defined at the MAC level. The available radio resources (i.e. the orthogonal subchannels) are selectively attributed to transmitting users depending on their performance achieved at MAC level and measured by an “intelligent” gateway. When the quality level is not satisfactory for one or more users, the AP issues a decrease of the data rate for such users while providing them with an increased number of subcarriers, guaranteeing a slower transmission fostered against frequency-selective channel distortions. The paper presents an overview of the system and tests its performance through extensive simulations. The proposed joint MAC-PHY approach demonstrates good performance in terms of achieved throughput and high flexibility in radio resource management.This work has been partially supported in Italy by the “NETMOBS -Network-supported Mobility for the Student” – Create-NET project funding, 2005. Claudio Sacchi was born in Genoa (Italy) in 1965. He obtained the Laurea degree in Electronic Engineering, and the Ph.D. in Space Science and Engineering at the University of Genoa (Italy). Since August 2002, Dr. Sacchi has been holding a position as assistant professor at the Faculty of Engineering of the University of Trento (Italy). In 2004, he was appointed by the Department of Information and Communication Technology of the University of Trento as leader of the Research Program titled: “Wireless and Satellite Communications”. The research interests of Dr. Sacchi are focused on wideband mobile and satellite transmission systems based on space, time and frequency diversity, multi-user receivers based on non conventional techniques, and high-frequency ultra-wideband satellite communications. Dr. Sacchi is author and co-author of more than 40 papers published in international journals and conferences. He is member of IEEE. Giovanni Berlanda Scorza was born in Trento (Italy) in 1978. He received the Laurea in Telecommunications Engineering in 2002 at the “Politecnico di Milano” Technical University. Since October 2002, he is a Ph.D student at the Information and Communications Technologies (ICT) International Doctorate School of the University of Trento. His research interests mainly concern with specific aspects related to OFDM and MC-CDMA transmission techniques like e.g.: computationally-affordable multi-user receivers, Medium Access Control strategies, multicarrier-based multiplexing of multi-layered MPEG-4 coded video streams, etc. Fabrizio Granelli was born in Genoa in 1972. He received the “Laurea” (M.Sc.) degree in Electronic Engineering from the University of Genoa, Italy, in 1997, and the Ph.D. in Telecommunications from the same university, in 2001. Since 2000 he is carrying on his teaching activity as Assistant Professor in Telecommunications at the Dept. of Information and Communication Technology – University of Trento (Italy). In August 2004, he was visiting professor at the State University of Campinas (Brasil). He is author or co-author of more than 50 papers published in international journals, books and conferences, and he is member of the Technical Committee of the International Conference on Communications (ICC2003, ICC2004 and ICC2005) and Global Telecommunications Conference (GLOBECOM2003 and GLOBECOM2004). Dr. Granelli is guest-editor of ACM Journal on Mobile Networks and Applications, special issue on “WLAN Optimization at the MAC and Network Levels” and Co-Chair of 10th IEEE Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks (CAMAD'04). Dr. Granelli is General Vice-Chair of the First International Conference on Wireless Internet (WICON'05). His main research activities are in the field of networking and signal processing, with particular reference to network performance modeling, medium access control, wireless networks, next-generation IP, and video transmission over packet networks. Francesco G.B. De Natale received the Laurea in Electronic Engineering in 1990, and the Ph.D. in Telecommunications in 1994, both from the University of Genoa, Italy. In 1995–96 he was Visiting Professor at the University of Trento, Italy and from 1996 to 1999 Assistant Professor at the University of Cagliari, Italy. At present he is Full Professor of Telecommunications at the University of Trento, where he coordinates the didactic activities of the Bachelor and Master Courses in Telecommunications Engineering. Prof. De Natale is Deputy Head of the Dept. of Information and Communication Technologies, where he leads the research activities of the Multimedia Communications Lab. The research interests of Prof. De Natale are focused on image and signal processing, with particular attention to multimedia data compression, processing and transmission. He was General Co-Chair of the Packet Video Workshop in 2000 and is Technical Program Co-Chair of the IEEE Intl. Conf. on Image Processing to be held in 2005. In 1998 he was co-recipient of the IEEE Chester-Sall Best Paper Award. Prof. De Natale is a Senior Member of IEEE.  相似文献   

19.
Pre-equalization Techniques for Downlink and Uplink TDD MC-CDMA Systems   总被引:1,自引:0,他引:1  
Time division duplex (TDD) multi carrier-code division multiple access (MC-CDMA) systems have recently been proposed as potential candidates for next generation (4G) technology. In order to mitigate multiple access interference, in this paper we investigate pre-equalization schemes for both downlink and uplink transmissions, the former also in a multiple transmit antenna scenario. In particular, new pre-equalizer techniques are introduced and complexity issues addressed. Numerical results are given to highlight the effectiveness of the proposed schemes with respect to other existing pre-equalizer solutions. Paola Bisaglia was born in Padova, Italy, on August 8, 1971. She received the Laurea (cum laude) and Ph.D. degrees in electronic engineering from the University of Padova, Padova, Italy in 1996 and 2000 respectively. In 2000 she joined Hewlett-Packard Research Laboratories, Bristol, England, working on Home Phoneline Networking and wireless LANs. From 2002 she is a research fellow at the Department of Information Engineering of the University of Padova, Italy. Her research interests include wireless local area networks; modulation, coding techniques and detection strategies for next generation (4G) broadband cellular systems, based on the combination of multi-carrier and spread-spectrum modulations. Luca Sanguinetti is a Ph.D. Student of the University of Pisa. He was born in Empoli, Italy, on February 19, 1977, and he received the Doctor Engineer degree (cum laude) in information engineering from the University of Pisa, Italy, in 2002. Since 2002 he was with the Department of Information Engineering of the University of Pisa, where he is working toward the Ph.D. degree in information engineering under the supervision of Prof. Umberto Mengali and Prof. Michele Morelli. In 2004, he was a visiting Ph.D. student at the German Aerospace Center (DLR), Oberpfaffenhofen, Germany. Currently he is involved in a research project dealing with the design and the development of base stations and user terminals for wideband wireless communications systems able to cope with those reconfigurability and interoperability characteristics required by the next generation mobile communication systems. His research interests are in wireless communication theory, with emphasis on synchronization and detection algorithms and channel estimation in multiple-access communication systems. Michele Morelli received the Laurea (cum laude) in electrical engineering and the “Premio di Laurea SIP” from the University of Pisa, Italy, in 1991 and 1992 respectively. From 1992 to 1995 he was with the Department of Information Engineering of the University of Pisa, where he received the Ph.D. degree in electrical engineering. In September 1996 he joined the Centro Studi Metodi e Dispositivi per Radiotrasmissioni (CSMDR) of the Italian National Research Council (CNR) in Pisa where he held the position of Research Assistant. Since 2001 he has been with the Department of Information Engineering of the University of Pisa where he is currently an Associate Professor of Telecommunications. His research interests are in wireless communication theory, with emphasis on synchronization algorithms and channel estimation in multiple-access communication systems. Nevio Benvenuto received the Laurea degree from the University of Padova, Padova, Italy, and the Ph.D. degree from the University of Massachusetts, Amherst, in 1976 and 1983, respectively, both in electrical engineering. From 1983 to 1985 he was with AT&T Bell Laboratories, Holmdel, NJ, working on signal analysis problems. He spent the next three years alternating between the University of Padova, where he worked on communication systems research, and Bell Laboratories, as a Visiting Professor. From 1987 to 1990, he was a member of the faculty at the University of Ancona. He was a member of the faculty at the University of L'Aquila from 1994 to 1995. Currently, he is a Professor in the Electrical Engineering Department, University of Padova. His research interests include voice and data communications, digital radio, and signal processing. Silvano Pupolin received the Laurea degree in Electronic Engineering from the University of Padova, Italy, in 1970. Since then he joined the Department of Information Engineering, University of Padova, where currently is Full Professor of Electrical Communications. He was Chairman of the Faculty of Electronic Engineering from 1990 to 1994, Chairman of the PhD Course in Electronics and Telecommunications Engineering from 1991 to 1997 and Director of the PhD School in Information Engineering from 2004. Also, he was member of the programming and development committee from 1997 to 2002 and member of Scientific Committee from 1996 to 2001 of the University of Padova; member of the budget Committee of the Faculty of Engineering from 2003. He has been actively engaged in research on: Digital communication systems over copper wires and fiber optics; Spread spectrum communication systems; Design of large reliable communications networks; Effects of phase noise and HPA nonlinearities in OFDM systems; 3G mobile radio communications systems (UTRA-FDD and TDD) and beyond 3G (OFDM modulation and MC CDMA); Packet radio, Ad-hoc networks with the use of Bluetooth and WLAN. He was Chairman of the 9-th and 10-th Tyrrhenian International Workshop on Digital Communications devoted to “Broadband Wireless Communications” and to “Multimedia Communications”, respectively, and he was General Chair of the 7th International Symposium on Wireless Personal Multimedia Communications (WPMC'04). He spent the summer 1985 at AT&T Bell Laboratories on leave from Padova, doing research on digital radio systems. He was Principal investigator for research projects entitled “Variable bit rate mobile radio communication systems for multimedia applications”, “OFDM Systems with Applications to WLAN Networks”, and “MC-CDMA: an air interface for the 4th generation of wireless systems”.  相似文献   

20.
This paper presents an in-depth study of the pros and cons of voltage-mode multiplexers for Gbps serial links and exploits the advantages of multiplexing in current domain. In addition, it proposes a new fully differential CMOS current-mode multiplexer where a high multiplexing speed is achieved by multiplexing at a low-impedance node. Multiplexing speed is further improved by inductive shunt peaking with active inductors. The differential configuration of the multiplexer minimizes the effect of common-mode disturbances, particularly those coupled from the power and ground rails. The flow of the output currents in the opposite directions minimizes the effect of electro-magnetic interference from channels, making the multiplexer particularly attractive for high-speed data transmission over long interconnects and printed-circuit-board (PCB) traces. The proposed multiplexer draws a constant current from the supply voltage, thereby minimizing both switching noise and noise injected to the substrate. A fully differential CMOS current-mode 8-to-l multiplexer has been implemented in TSMC’s 1.8 V 0.18 μm CMOS technology and analyzed using Spectre from Cadence Design Systems with BSIM3.3v device models. Simulation results demonstrate that the multiplexer offers sufficiently large eye-opening when multiplexed at 10 Gbps.Jean Jiang received the B.Eng. degree in Electrical Engineering from Wuhan University of Technology, Wuhan, China in 1995. From 1999 to 2001, she worked for Ericsson Global IT Services where she was a technical staff to maintain computer networks. Since 2002, she has been a research assistant with the System-on-Chip research lab of Ryerson University. She is currently a M.A.Sc candidate under the supervision of Dr. Fei Yuan in the Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada. Her research interests are in analog CMOS circuit design for high-speed data communications. She was awarded the Ontario Graduate Scholarship (OGS) in 2003–2005 for academic excellence.Fei Yuan received the B.Eng. degree in electrical engineering from Shandong University, Jinan, China in 1985, the MASc. degree in chemical engineering and PhD. degree in electrical engineering from University of Waterloo, Waterloo, Ontario, Canada in 1995 and 1999, respectively.During 1985–1989, he was a Lecturer in the Department of Electrical Engineering, Changzhou Institute of Technology, Jiangsu, China. In 1989 he was a Visiting Professor at Humber College of Applied Arts and Technology, Toronto, Canada. During 1989–1994, he worked for Paton Controls Limited, Sarnia, Ontario, Canada as a Controls Engineer. Since July 1999 he has been with the Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada, where he is currently an Associate Professor and the Associate Chair for Undergraduate Studies and Faculty Affairs. He is the co-author of the book “Computer Methods for Analysis of Mixed-Mode Switching Circuits” (Kluwer Academic Publishers, 2004, with Ajoy Opal). Dr. Yuan received an “Excellence of Teaching” award from Changzhou Institute of Technology in 1988, a post-graduate scholarship from Natural Science and Engineering Research Council (NSERC) of Canada during 1997–1998. He is a senior member of IEEE and a registered professional engineer in the province of Ontario, Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号