共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this experiment was to quantify the milk production capacity of cows undergoing extended lactations while fed a pasture-based diet typical of those used in the seasonal-calving dairying systems of Victoria, Australia. One hundred twenty-five Holstein cows were randomly assigned to 1 of 5 groups. Breeding was progressively delayed after calving to enable management of the groups for lactation lengths of 10, 13, 16, 19, and 22 mo (equivalent to calving intervals of 12 to 24 mo). Cows were provided with a daily energy intake of at least 180 MJ of metabolizable energy/cow. This was supplied primarily by grazed pasture with supplementary cereal grain, pasture silage, and hay. Cows were dried off when milk volume fell below 30 kg/wk or when they reached 56 d before their expected calving date. Most cows (>96%) could lactate above this threshold for 16 mo, >80% for 19 mo, and >40% for 22 mo. There were negative relationships between lactation length and annual production of milk and milk solids (milk fat + protein), but losses were small until 16 mo. Annualized yields of milk solids were 497, 498, 495, 474, and 463 kg/cow for the 10, 13, 16, 19, and 22 mo groups, respectively. This reduction in annual production of milk solids with increasing lactation length was relatively less than for milk volume because during extended lactation, cows produced milk with higher concentrations of protein. Cows undergoing extended lactations also finished their lactations having gained more body weight and body condition than cows lactating for only 10 mo. The data showed that many cows on pasture-based diets were capable of lactating longer than the 10 mo that is standard for Victorian herds with seasonally concentrated calving patterns. Further, such extended lactations could be achieved with little penalty in terms of annual milk solids production. 相似文献
2.
H. Harzia A. Ilves M. Ots M. Henno I. Jõudu T. Kaart K. Ling O. Kärt K. Kilk U. Soomets 《Journal of dairy science》2013
Milk composition has been known to change during lactation. To help understand the changes in metabolic profile throughout the whole lactation, liquid chromatography mass-spectrometry was used to analyze 306 milk samples from 82 primi- and multiparous dairy cows. Changes in metabolic profile common to all cows throughout lactation were ascertained based on principal component and general linear model analysis. Sets of specific markers; for instance, 225, 397, and 641–642 m/z (positive mode), and 186, 241, and 601–604 (negative mode), with at least a 1.5-fold higher intensity during the first 60 d compared with the last 60 d of lactation were observed. The metabolome was affected by parity and milking time. Markers, identified as peptides differentiating parity, were observed. A significant increase for citrate was observed in evening milk. Milk coagulation traits were strongly animal specific. The curd firmness values were influenced by milking time. Sets of markers were associated with curd firmness in positive (197 m/z) and negative (612, 737, 835, 836, 902, 1000, 1038, and 1079 m/z) ion mode. 相似文献
3.
The aim of this study was to measure the effect of type of diet and level of energy intake on the performance of cows undergoing extended lactations. Ninety-six Holstein-Friesian cows that calved in July and August 2004 were assigned randomly to 1 of 8 groups each of 12 cows (including 4 primiparous cows). Two of the 8 groups were assigned to each of 4 treatments that varied in lactation length (300 or 670 d) and diet (3 diets: control, high, or full total mixed ration (TMR). The 4 treatments were 1) control 300: cows were managed for a 300-d lactation and grazed pasture supplemented with grain and forage to provide a minimum daily dietary intake of 160 MJ of ME/cow; 2) control 670: as for control 300 except that cows were managed for a 670-d lactation; 3) high 670: cows were managed for a 670-d lactation and pasture was supplemented with grain and forage to provide a minimum daily dietary intake of 180 MJ of ME/cow; 4) full TMR 670: cows were managed for a TMR system that included a high body condition score at calving with cows offered a TMR during a 670-d lactation. The TMR was initially offered ad libitum indoors until about 440 DIM when the amount of TMR offered was reduced by about 2 kg of DM/d to prevent excessive weight gain. The proportions of cows still milking at the end of a 670-d lactation were similar for the control and high dietary groups. The full TMR group had fewer cows milking at 600 DIM: 17 cows milking compared with 24 cows in the control 670 group and 22 cows in the high 670 group. For the period 1 to 670 DIM, increasing the energy level in the diet (control 670 vs. high 670) resulted in a similar yield of milk and a similar fat concentration in the milk, but greater yields of milk fat and protein and greater milk protein percentage of the milk. The full TMR 670 group produced greater yields of milk and milk components (fat, protein, and lactose) and also protein percentage in the milk than the other groups. The milk solids (fat + protein) ratio for the 3 extended-lactation groups, defined as production achieved during the 24-mo calving interval divided by 2 yr (annualized production) expressed as a ratio of that produced in the normal 12-mo calving interval, was not affected by increasing the level of grain in the pasture-based diets (0.93 vs. 0.90 for control and high diets, respectively), but decreased with the TMR diet (0.79). The control 670 group produced 7.1% less milk, but only 2.4% less milk solids than the control 300 group over the 2-yr period of the study. Combining our data with that from 2 earlier studies of extended lactation demonstrated that Holstein cows with a high proportion of Northern Hemisphere genes offered pasture-based diets could achieve a high milk solids ratio, a greater proportion of cows milking at drying-off, and lower body weight gain over the lactation. 相似文献
4.
F. Gustavsson M. Glantz N.A. Poulsen L. Wadsö H. Stålhammar A. Andrén H. Lindmark Månsson L.B. Larsen M. Paulsson W.F. Fikse 《Journal of dairy science》2014
Milk coagulation is an important processing trait, being the basis for production of both cheese and fermented products. There is interest in including technological properties of these products in the breeding goal for dairy cattle. The aim of the present study was therefore to estimate genetic parameters for milk coagulation properties, including both rennet- and acid-induced coagulation, in Swedish Red dairy cattle using genomic relationships. Morning milk samples and blood samples were collected from 395 Swedish Red cows that were selected to be as genetically unrelated as possible. Using a rheometer, milk samples were analyzed for rennet- and acid-induced coagulation properties, including gel strength (G′), coagulation time, and yield stress (YS). In addition to the technological traits, milk composition was analyzed. A binary trait was created to reflect that milk samples that had not coagulated 40 min after rennet addition were considered noncoagulating milk. The cows were genotyped by using the Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA). Almost 600,000 markers remained after quality control and were used to construct a matrix of genomic relationships among the cows. Multivariate models including fixed effects of herd, lactation stage, and parity were fitted using the ASReml software to obtain estimates of heritabilities and genetic and phenotypic correlations. Heritability estimates (h2) for G′ and YS in rennet and acid gels were found to be high (h2 = 0.38–0.62) and the genetic correlations between rennet-induced and acid-induced coagulation properties were weak but favorable, with the exception of YSrennet with G′acid and YSacid, both of which were strong. The high heritability (h2 = 0.45) for milk coagulating ability expressed as a binary trait suggests that noncoagulation could be eliminated through breeding. Additionally, the results indicated that the current breeding objective could increase the frequency of noncoagulating milk and lead to deterioration of acid-induced coagulation through unfavorable genetic associations with protein content (0.38) and milk yield (−0.61 to −0.71), respectively. The outcome of this study suggests that by including more detailed compositional traits genetically associated with milk coagulation or by including milk coagulation properties directly within the breeding goal, it appears possible to breed cows that produce milk better suited for production of cheese and fermented products. 相似文献
5.
Effect of protein composition on the cheese-making properties of milk from individual dairy cows 总被引:1,自引:0,他引:1
Wedholm A Larsen LB Lindmark-Månsson H Karlsson AH Andrén A 《Journal of dairy science》2006,89(9):3296-3305
The objective of this study was to evaluate the effect of variations in milk protein composition on milk clotting properties and cheese yield. Milk was collected from 134 dairy cows of Swedish Red and White, Swedish Holstein, and Danish Holstein-Friesian breed at 3 sampling occasions. Concentrations of αS1-, β-, and κ-casein (CN), α-lactalbumin, and β-lactoglobulin (LG) A and B were determined by reversed phase liquid chromatography. Cows of Swedish breeds were genotyped for genetic variants of β- and κ-CN. Model cheeses were produced from individual skimmed milk samples and the milk clotting properties were evaluated. More than 30% of the samples were poorly coagulating or noncoagulating, resulting in weak or no coagulum, respectively. Poorly and noncoagulating samples were associated with a low concentration of κ-CN and a low proportion of κ-CN in relation to total CN analyzed. Furthermore, the κ-CN concentration was higher in milk from cows with the AB genotype than the AA genotype of κ-CN. The concentrations of αS1-, β-, and κ-CN and of β-LG B were found to be significant for the cheese yield, expressed as grams of cheese per one hundred grams of milk. The ratio of CN to total protein analyzed and the β-LG B concentration positively affected cheese yield, expressed as grams of dry cheese solids per one hundred grams of milk protein, whereas β-LG A had a negative effect. Cheese-making properties could be improved by selecting milk with high concentrations of αS1-, β-, and κ-CN, with high κ-CN in relation to total CN and milk that contains β-LG B. 相似文献
6.
The objective of this study was to estimate heritabilities and repeatabilities for milk coagulation traits [milk coagulation time (RCT) and curd firmness (E30)] and genetic and phenotypic correlations between milk yield and composition traits (milk fat percentage and protein percentage, urea, somatic cell count, pH) in first-lactation Estonian Holstein dairy cattle. A total of 17,577 test-day records from 4,191 Estonian Holstein cows in 73 herds across the country were collected during routine milk recordings. Measurements of RCT and E30 determined with the Optigraph (Ysebaert, Frepillon, France) are based on an optical signal in the near-infrared region. The cows had at least 3 measurements taken during the period from April 2005 to January 2009. Data were analyzed using a repeatability animal model. There was substantial variation in milk coagulation traits with a coefficient of variation of 27% for E30 and 9% for the log-transformed RCT. The percentage of variation explained by herd was 3% for E30 and 4% for RCT, suggesting that milk coagulation traits are not strongly affected by herd conditions (e.g., feeding). Heritability was 0.28 for RCT and 0.41 for E30, and repeatability estimates were 0.45 and 0.50, respectively. Genetic correlation between both milk coagulation traits was negligible, suggesting that RCT and E30 have genetically different foundations. Milk coagulation time had a moderately high positive genetic (0.69) and phenotypic (0.61) correlation with milk pH indicating that a high pH is related to a less favorable RCT. Curd firmness had a moderate positive genetic (0.48) and phenotypic (0.45) correlation with the protein percentage. Therefore, a high protein percentage is associated with favorable curd firmness. All reported genetic parameters were statistically significantly different from zero. Additional univariate random regression analysis for milk coagulation traits yielded slightly higher average heritabilities of 0.38 and 0.47 for RCT and E30 compared with the heritabilities of the repeatability model. 相似文献
7.
This study was conducted to determine whether extending the calving interval (CI) to 24 mo would be an alternative to culling and replacing cows that had failed to become pregnant. Forty-six nonpregnant lactating cows were assembled in November 2004 and assigned to receive either 3 kg (low) or 6 kg (high) of concentrate supplement and a basal diet of grass silage and maize silage over the winter period (13 wk). Cows returned to pasture in late March and received 1 kg of concentrate/d until dry-off (milk yield <5 kg/d). Cumulative milk production was calculated from calving to the end of November 2004 (12-mo CI) and from the start of December 2004 until dry off in 2005 (extended lactation part of 24-mo CI). High winter feeding resulted in greater milk production over the winter confinement (20.0 ± 0.3 vs. 17.8 ± 0.3 kg/d for high and low winter feeding, respectively) and had a carryover effect during the remainder of the 24-mo CI period (5,177 vs. 4,686 kg; SEM = 173 kg). At the end of the study, cows were ranked on cumulative milk solids and separated into 3 groups (R1, R2, and R3). During the 24-mo CI, milk yields were 7,287, 6,267, and 5,273 kg (SEM = 308 kg) in yr 1, and 5,738, 4,836, and 4,266 (SEM = 241 kg) in yr 2 for R1, R2, and R3, respectively. Eighty-five percent of the cows became pregnant during the breeding season of yr 2, with a conception rate to first service of 52%. An economic analysis of different ranks with a 12-mo CI, a 24-mo CI, and an annualized herd effect, which compared an efficient spring calving system with 30% recycled cows in R1 and 10% recycled cows in R3, was carried out. Farm profit was reduced by 60% and 65% at a milk price of 22.3 euro-cents (c)/L with the corresponding values of 17% and 30% for a milk price of 30 c/L, respectively, when R1 and R3 systems were compared with an efficient spring milk (12-mo CI) production system. Within a spring system where 30% and 10% of R1 and R3 animals were subjected to extended lactations, the profit difference was reduced compared with an efficient spring system, The results indicated that lactations with a 24-mo CI may be a viable alternative to culling nonpregnant cows and be economically more suited to higher producing cows. 相似文献
8.
The aim of this study was to test the feasibility of extended lactations in pastoral systems by using divergent dairy cow genotypes [New Zealand (NZ) or North American (NA) Holstein-Friesian (HF)] and levels of nutrition (0, 3, or 6 kg/d of concentrate dry matter). Mean calving date was July 28, 2003, and all cows were dried off by May 6, 2005. Of the 56 cows studied, 52 (93%) were milking at 500 d in milk (DIM) and 10 (18%) were milking at 650 DIM. Dietary treatments did not affect DIM (605 ± 8.3; mean ± SEM). Genotype by diet interactions were found for total yield of milk, protein, and milk solids (fat + protein), expressed per cow and as a percentage of body weight. Differences between genotypes were greatest at the highest level of supplementation. Compared with NZ HF, NA HF produced 35% more milk, 24% more milk fat, 25% more milk protein, and at drying off had 1.9 units less body condition score (1 to 10 scale). Annualized milk solids production, defined as production achieved during the 24-mo calving interval divided by 2 yr, was 79% of that produced in a normal 12-mo calving interval by NZ HF, compared with 94% for NA HF. Compared with NZ HF, NA HF had a similar 21-d submission rate (85%) to artificial insemination, a lower 42-d pregnancy rate (56 vs. 79%), and a higher final nonpregnancy rate (30 vs. 3%) when mated at 451 d after calving. These results show that productive lactations of up to 650 d are possible on a range of pasture-based diets, with the highest milk yields produced by NA HF supplemented with concentrates. Based on the genetics represented, milking cows for 2 yr consecutively, with calving and mating occurring every second year, may exploit the superior lactation persistency of high-yielding cows while improving reproductive performance. 相似文献
9.
Some cows are able to achieve relatively high milk yields during extended lactations beyond 305 d in milk, and farmers may be able to use this potential by selecting the most suitable cows for an extended lactation. However, the decision to postpone insemination has to rely on information available in early lactation. The main objectives of this study were, therefore, to assess the association between the information available in early lactation and the relative milk production of cows on extended lactation, and to investigate if this information can be used to differentiate time of first insemination between cows. Data came from 4 Danish private herds practicing extended lactation in which some cows are selected to have a delayed time of planned first insemination. Average herd size varied from 93 to 157 cows, and milk yield varied from 7,842 to 12,315 kg of energy-corrected milk (ECM) per cow per year across herds. The analysis was based on 422 completed extended lactations (427 ± 87 d), and each lactation was assigned to 1 of 3 (low, medium, and high) milk performance groups (MPG) within parity group within herd based on a standardized lactation yield. For cows in the high MPG, peak ECM yield, and ECM yield at dry off were significantly greater, the relative reduction in milk yield between 60 and 305 d in milk was significantly smaller, and a smaller proportion had a body condition score (scale: 1–5) at dry off of 3.5 or greater compared with cows in low MPG. Previous lactation days in milk at peak ECM yield and ECM yield at dry off were higher, the relative reduction in milk yield between 60 and 305 d in milk was smaller, and the number of inseminations per conception was higher for multiparous cows in high MPG compared with low. Current lactation ECM yield at second and third milk recording were greater for cows in high MPG compared with low. A principal component analysis indicated that variables related to fertility, diseases, and milk yield explained most of the total variation between primiparous cows, whereas variables related to milk yield, fertility, and days in milk at peak yield were the most dominating for multiparous cows. Our study indicated that milk yields in previous lactation and at second and third milk recording correlate well with milk production potential, and therefore, may be promising indicators when selecting the most suitable cows for extended lactation. 相似文献
10.
Cecchinato A Penasa M De Marchi M Gallo L Bittante G Carnier P 《Journal of dairy science》2011,94(8):4205-4213
The aim of this study was to estimate heritabilities of rennet coagulation time (RCT) and curd firmness (a30) and their genetic correlations with test-day milk yield, composition (fat, protein, and casein content), somatic cell score, and acidity (pH and titratable acidity) using coagulating and noncoagulating (NC) milk information. Data were from 1,025 Holstein-Friesian (HF) and 1,234 Brown Swiss (BS) cows, which were progeny of 54 HF and 58 BS artificial insemination sires, respectively. Milk coagulation properties (MCP) of each cow were measured once using a computerized renneting meter and samples not exhibiting coagulation within 31 min after rennet addition were classified as NC milk. For NC samples, RCT was unobserved. Multivariate analyses, using Bayesian methodology, were performed to estimate the genetic relationships of RCT or a30 with the other traits and statistical inference was based on the marginal posterior distributions of parameters of concern. For analyses involving RCT, a right-censored Gaussian linear model was used and records of NC milk samples, being censored records, were included as unknown parameters in the model implementing a data augmentation procedure. Rennet coagulation time was more heritable [heritability (h2) = 0.240 and h2 = 0.210 for HF and BS, respectively] than a30 (h2 = 0.148 and h2 = 0.168 for HF and BS, respectively). Milk coagulation properties were more heritable than a single test-day milk yield (h2 = 0.103 and h2 = 0.097 for HF and BS, respectively) and less heritable than milk composition traits whose heritability ranged from 0.275 to 0.275, with the only exception of fat content of BS milk (h2 = 0.108). A negative genetic correlation, lower than −0.85, was estimated between RCT and a30 for both breeds. Genetic relationships of MCP with yield and composition were low or moderate and favorable. The genetic correlation of somatic cell score with RCT in BS cows was large and positive and even more positive were those of RCT with pH and titratable acidity in both breeds, ranging from 0.80 to 0.94. Including NC milk information in the data affected the estimated correlations and decreased the uncertainty associated with the estimation process. On the basis of the estimated heritabilities and genetic correlations, enhancement of MCP through selective breeding with no detrimental effects on yield and composition seems feasible in both breeds. Milk acidity may play a role as an indicator trait for indirect enhancement of MCP. 相似文献
11.
C.L. Manuelian G. Visentin C. Boselli G. Giangolini M. Cassandro M. De Marchi 《Journal of dairy science》2017,100(9):7083-7087
Milk coagulation and acidity traits are important factors to inform the cheesemaking process. Those traits have been deeply studied in bovine milk, whereas scarce information is available for buffalo milk. However, the dairy industry is interested in a method to determine milk coagulation and acidity features quickly and in a cost-effective manner, which could be provided by Fourier-transform mid-infrared (FT-MIR) spectroscopy. The aim of this study was to evaluate the potential of FT-MIR to predict coagulation and acidity traits of Mediterranean buffalo milk. A total of 654 records from 36 herds located in central Italy with information on milk yield, somatic cell score, milk chemical composition, milk acidity [pH, titratable acidity (TA)], and milk coagulation properties (rennet coagulation time, curd firming time, and curd firmness) were available for statistical analysis. Reference measures of milk acidity and coagulation properties were matched with milk spectral information, and FT-MIR prediction models were built using partial least squares regression. The data set was divided into a calibration set (75%) and a validation set (25%). The capacity of FT-MIR spectroscopy to correctly classify milk samples based on their renneting ability was evaluated by a canonical discriminant analysis. Average values for milk coagulation traits were 13.32 min, 3.24 min, and 39.27 mm for rennet coagulation time, curd firming time, and curd firmness, respectively. Milk acidity traits averaged 6.66 (pH) and 7.22 Soxhlet-Henkel degrees/100 mL (TA). All milk coagulation and acidity traits, except for pH, had high variability (17 to 46%). Prediction models of coagulation traits were moderately to scarcely accurate, whereas the coefficients of determination of external validation were 0.76 and 0.66 for pH and TA, respectively. Canonical discriminant analysis indicated that information on milk coagulating ability is present in the MIR spectra, and the model correctly classified as noncoagulating the 91.57 and 67.86% of milk samples in the calibration and validation sets, respectively. In conclusion, our results can be relevant to the dairy industry to classify buffalo milk samples before processing. 相似文献
12.
Genetic analysis of detailed milk protein composition and coagulation properties in Simmental cattle
The objective of this study was to estimate genetic parameters for milk protein fraction contents, milk protein composition, and milk coagulation properties (MCP). Contents of αS1-, αS2-, β-, γ-, and κ-casein (CN), β-lactoglobulin (β-LG), and α-lactalbumin (α-LA) were measured by reversed-phase HPLC in individual milk samples of 2,167 Simmental cows. Milk protein composition was measured as percentage of each CN fraction in CN (αS1-CN%, αS2-CN%, β-CN%, γ-CN%, and κ-CN%) and as percentage of β-LG in whey protein (β-LG%). Rennet clotting time (RCT) and curd firmness (a30) were measured by a computerized renneting meter. Heritabilities for contents of milk proteins ranged from 0.11 (α-LA) to 0.52 (κ-CN). Heritabilities for αS1-CN%, κ-CN%, and β-CN% were similar and ranged from 0.63 to 0.69, whereas heritability of αS2-CN%, γ-CN%, and β-LG% were 0.28, 0.18, and 0.34, respectively. Effects of CSN2-CSN3 haplotype and BLG genotype accounted for more than 80% of the genetic variance of αS1-CN%, β-CN%, and κ-CN% and 50% of the genetic variance of β-LG%. The genetic correlations among the contents of CN fractions and between CN and whey protein fractions contents were generally low. When the data were adjusted for milk protein gene effects, the magnitude of the genetic correlations among the contents of milk protein fractions markedly increased, indicating that they undergo a common regulation. The proportion of β-CN in CN correlated negatively with κ-CN% (r = −0.44). The genetic relationships between CN and whey protein composition were trivial. Low milk pH correlated with favorable MCP. Genetically, contents and proportions of αS1- and αS2-CN in CN were positively correlated with RCT. The relative proportion of β-CN in CN exhibited a genetic correlation with RCT of −0.26. Both the content and the relative proportion of κ-CN in CN did not correlate with RCT. Weak curds were genetically associated with increased proportions in CN of αS1- and αS2-CN, decreased contents of β-CN and κ-CN, and decreased proportion of κ-CN in CN. Negligible effects on the estimated correlations between a30 and κ-CN contents or proportion in CN were observed when the model accounted for milk protein gene effects. Increasing β-CN and κ-CN contents and relative proportions in CN and decreasing the content and proportions of αS1-CN and αS2-CN and milk pH through selective breeding exert favorable effects on MCP. 相似文献
13.
The enhancement of milk coagulation properties (MCP) and the reuse of whey produced by the dairy industry are of great interest to improve the efficiency of the cheese-making process. Native whey proteins (WP) can be aggregated and denatured to obtain colloidal microparticulated WP (MWP). The objective of this study was to assess the effect of MWP on MCP; namely, rennet coagulation time (RCT), curd-firming time, and curd firmness 30 min after rennet addition. Six concentrations of MWP (vol/vol; 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0%) were added to 3 bulk milk samples (collected and analyzed during 3 d), and a sample without MWP was used as control. Within each day of analysis, 6 replicates of MCP for each treatment were obtained, changing the position of the treatment in the rack. For control samples, 2 replicates per day were performed. In addition to MCP, WP fractions were measured on each treatment during the 3 d of analysis. Milk coagulation properties were measured on 144 samples by using a Formagraph (Foss Electric, Hillerød, Denmark). Increasing the amount of MWP added to milk led to a longer RCT. In particular, significant differences were found between RCT of the control samples (13.5 min) and RCT of samples with 3.0% (14.6 min) or more MWP. A similar trend was observed for curd-firming time, which was shortest in the control samples and longest in samples with 9.0% MWP (21.4 min). No significant differences were detected for curd firmness at 30 min across concentrations of MWP. Adjustments in cheese processing should be made when recycling MWP, in particular during the coagulation process, by prolonging the time of rennet activity before cutting the curd. 相似文献
14.
This study aimed to characterize the time-profile of extended lactation (EL) for dairy goats, and the relationships between milk production, liveweight, and intake that are associated with this profile. For this, 20 nonpregnant multiparous dairy goats were monitored daily for about 90 d from the onset of EL [i.e., when an increase in milk yield (MY) was observed]. These 20 individual profiles were pooled to create a group average profile at the onset of EL for the purpose of parameterizing a simple compartmental model. Moreover, 9 of the 20 EL goats were kept to compare their 24-mo profiles of body weight and milk production with those observed during 2 successive normal lactations (NL). Despite being kept in the same environment and on the same feed, a clear change from decreasing to increasing MY was identified (time of change, Tchange) for all of the 20 EL goats around 330 d in milk. During the whole 24-mo period, EL goats produced as much milk as NL goats but this total milk production was unequally split before (56%) and after (44%) Tchange. In terms of body weight, the most striking difference between EL and NL goats was the rapid and very high increase (+9.3 kg with an average daily gain of 60.4 g/d) that was observed concurrently with the increase in MY. Model parameterization with the group average profile does not support that the rise in MY drives the increase in resource acquisition as is generally assumed at the onset of an NL. Rather, it demonstrates that the transfer of energy from feed to milk is delayed at the onset of EL. Moreover, assessing the model ability to fit the range of individual profiles showed that the performances over the first 90 d of EL are largely predetermined by the animal state at Tchange. The analysis of individual variability in EL efficiency showed that it depends both on an increase in resource acquisition and on the potential of goats to partition energy from the diet toward milk production instead of to body tissue gain. Finally, predicting the suitability for EL requires the consideration of more than just milk production for 300 d in milk. 相似文献
15.
The aim of this study was to elucidate the structure of relationships between milk yield, composition, and coagulation properties of Brown Swiss cattle. Multivariate factor analysis was used to derive new synthetic variables that can be used for selection purposes. For this reason, genetic parameters of these new variables were estimated. Individual records on milk yield, fat and protein percentages, casein content, lactose percentage, somatic cell count, titratable acidity, and pH were taken on 1,200 Italian Brown Swiss cows located in 38 herds. Factor analysis was able to extract 4 latent variables with an associated communality equal to 70% of the total original variance. The 4 latent factors were interpreted as indicators of milk composition, coagulation, acidity, and mammary gland health, respectively. Factor scores calculated for each animal exhibited coherent patterns along the lactation and across different parities. Estimation of genetic parameters of factor scores carried out with a multiple-trait Bayesian hierarchical model showed moderate to low heritabilities (raging from 0.10 to 0.23) and genetic correlations (from −0.15 to 0.46). Results of the present study support the hypothesis of a simpler structure that controls, at least in part, the covariance of milk composition and coagulation properties. Moreover, extracted variables may be useful for both breeding and management purposes, being able to represent, with a single value for each animal, complex traits such as milk coagulation properties or health status of the mammary gland. 相似文献
16.
Mellado M Antonio-Chirino E Meza-Herrera C Veliz FG Arevalo JR Mellado J de Santiago A 《Journal of dairy science》2011,94(9):4524-4530
Records representing data from 1,500 barren Holstein cows over an 8-yr period from a large commercial dairy farm in northern Mexico were analyzed to determine the effects of lactation number and season and year of initiation of lactation on milk production of cows induced hormonally into lactation and treated with recombinant bovine somatotropin (rbST) throughout lactation. Peak and 305-d milk yields were also assessed as predictors of total milk yield in cows induced into lactation. A significant quadratic relationship was found between 305-d milk yield and number of lactation [7,607 ± 145 and 9,548 ± 181 kg for first- and ≥6-lactation cows, respectively; mean ± standard error of the mean (SEM)] with the highest production occurring in the fifth lactation. Total milk yields of cows with ≤2 lactations were approximately 4,500 kg less than milk yields of adult cows (the overall average ± standard milk yield was 13,544 ± 5,491 kg per lactation and the average lactation length was 454 ± 154 d). Moreover, 305-d milk production was depressed in cows induced into lactation in spring (8,804 ± 153 kg; mean ± SEM) and summer (8,724 ± 163 kg) than in fall (9,079 ± 151 kg) and winter (9,085 ± 143 kg). Partial regression coefficients for 305-d milk yield and peak milk yield indicated an increment of 157 kg of milk per lactation per 1-kg increase in peak milk yield (r2 = 0.69). Neither peak milk yield (r2 = 0.18) nor 305-d milk yield (r2 = 0.29) was accurate for predicting total milk yield per lactation. Year, parity, and season effects had significant influence on milk yield of cows induced into lactation and treated with rbST throughout lactation, and peak milk yield can assist in the prediction of 305-d milk yield but not total milk yield. This study also showed that hormonal induction of lactation in barren high-yielding cows is a reliable, practical, and affordable technique in countries where rbST treatment and prolonged steroid administration of dairy cows are legally permitted. 相似文献
17.
Transgenic cows secreting over 3 μg of lysostaphin/ mL of milk are protected against mastitis caused by Staphylococcus aureus, but it is unknown if active lysostaphin persists through dairy processing procedures or affects the production of fermented dairy foods. The objective of this study was to determine the fate of lysostaphin as milk was pasteurized and then processed into cheese. Raw milk from transgenic cows was heat treated at 63°C for 30 min, 72°C for 15 s (high temperature, short time), or 140°C for 2 s (UHT). Portions of the high temperature, short-time milk were manufactured into semi-hard cheeses. Aliquots taken at each processing step were assayed to determine the quantity (ELISA) and activity (ability to inhibit S. aureus growth) of lysostaphin. Results indicated that most of the lysostaphin was present in the aqueous portion of the milk and was not affected by pasteurization, although UHT treatment reduced enzyme concentration by 60%. The quantity and activity of the lysostaphin decreased during cheesemaking. Based on the amount of lysostaphin present in the starting cheesemilk, 10 to 15% of the lysostaphin was recovered in the whey, 21 to 55% in the cheese curd at d 1, and 21 to 36% in cheese stored at 4°C for 90 d. Enough of the lysostaphin secreted into milk by transgenic cows survived typical dairy processing conditions to impart potential value as a bioprotective agent against staphylococci in dairy foods. 相似文献
18.
Genetic parameters of milk coagulation properties and their relationships with milk yield and quality traits in Italian Holstein cows 总被引:1,自引:0,他引:1
Cassandro M Comin A Ojala M Dal Zotto R De Marchi M Gallo L Carnier P Bittante G 《Journal of dairy science》2008,91(1):371-376
Milk coagulation properties (MCP) are an important aspect in assessing cheese-making ability. Several studies showed that favorable conditions of milk reactivity with rennet, curd formation rate, and curd strength, as well as curd syneresis, have a positive effect on the entire cheese-making process and subsequently on the ripening of cheese. Moreover, MCP were found to be heritable, but little scientific literature is available about their genetic aspects. The aims of this study were to estimate heritability of MCP and genetic correlations among MCP and milk production and quality traits. A total of 1,071 Italian Holstein cows (progeny of 54 sires) reared in 34 herds in Northern Italy were sampled from January to July 2004. Individual milk samples were collected during the morning milking and analyzed for coagulation time (RCT), curd firmness (a30), pH, titratable acidity, fat, protein, and casein contents, and somatic cell count. About 10% of individual milk samples did not coagulate in 31 min, so they were removed from the analyses. Estimates of heritability for RCT and a30 were 0.25 ± 0.04 and 0.15 ± 0.03, respectively. Estimates of genetic correlations between MCP traits and milk production traits were negligible except for a30 with protein and casein contents (0.44 ± 0.10 and 0.53 ± 0.09, respectively). Estimates of genetic correlations between MCP traits and somatic cell score were strong and favorable, as well as those between MCP and pH and titratable acidity. Selecting for high casein content, milk acidity, and low somatic cell count might be an indirect way to improve MCP without reducing milk yield and quality traits. 相似文献
19.
E.E.A. Burgers A. Kok R.M.A. Goselink H. Hogeveen B. Kemp A.T.M. van Knegsel 《Journal of dairy science》2021,104(7):8009-8022
A 1-yr calving interval (CInt) is usually associated with maximized milk output, due to the calving-related peak in milk yield. Extending CInt could benefit cow health and production efficiency due to fewer transition periods per unit of time. Extending CInt can affect lactation performance by fewer days dry per year, delayed pregnancy effect on milk yield, and greater milk solid yield in late lactation. This study first investigated the effects of 3 different voluntary waiting periods (VWP) from calving until first insemination on body weight, body condition, milk yield, and lactation persistency. Second, individual cow characteristics in early lactation were identified that contributed to milk yield and persistency of cows with different VWP. Holstein-Friesian dairy cows (n = 154) within 1 herd were blocked for parity, calving season, and expected milk yield. Cows were randomly assigned within the blocks to 1 of 3 VWP (50, 125, or 200 d: VWP50, VWP125, or VWP200, respectively) and monitored through 1 complete lactation and the first 6 wk of the subsequent lactation, or until culling. Minimum and mean CInt (384 vs. 452 vs. 501 d for VWP50 vs. VWP125 vs. VWP200) increased with increasing VWP, but maximum CInt was equal for the 3 VWP. Fat- and protein-corrected milk yield (FPCM) was analyzed weekly. Milk yield and FPCM were also expressed per day of CInt, to compare yields of cows with different VWP. Persistency was determined between d 100 and d 200 of the lactation, as well as between d 100 and dry-off. Values are presented as least squares means ± standard error of the mean. During the first 44 wk of lactation, VWP did not affect FPCM yield in both primiparous and multiparous cows. The VWP did not affect milk yield per day of CInt. The VWP did not affect FPCM yield per day of calving interval for primiparous cows. Multiparous cows in VWP125 had FPCM yield per day of CInt similar to that of VWP50. Multiparous cows in VWP200 had lower FPCM yield per day of CInt compared with VWP50 (27.2 vs. 30.4 kg/d). During the last 6 wk before dry-off, cows in VWP125 had lower yield compared with cows in VWP50, which could benefit their udder health in the dry period and after calving. Persistency was better for cows in VWP200 compared with cows in VWP50 (?0.05 vs. ?0.07 kg/d). Body weight was not different among VWP groups. Multiparous cows in VWP200 had a higher body condition score in the last 3 mo before dry-off and the first 6 wk of the next lactation, compared with multiparous cows in VWP125 and VWP50. The VWP could be extended from 50 d to 125 d without an effect on daily yield per day of calving interval. Extending VWP until 200 d for primiparous cows did not affect their daily milk yield, but multiparous cows with a 200-d VWP had a reduced milk yield per day of calving interval and an increased body condition in late lactation and the subsequent lactation, compared with multiparous cows with a 50-d VWP. 相似文献
20.
Ulrik K. Sundekilde Frida Gustavsson Nina A. Poulsen Maria Glantz Marie Paulsson Lotte B. Larsen Hanne C. Bertram 《Journal of dairy science》2014
The milk metabolomes of 407 individual Swedish Red dairy cows were analyzed by nuclear magnetic resonance spectroscopy as part of the Danish-Swedish Milk Genomics Initiative. By relating these metabolite profiles to total milk protein concentration and rheological measurements of rennet-induced milk coagulation together using multivariate data analysis techniques, we were able to identify several different associations of the milk metabolome to technological properties of milk. Several novel correlations of milk metabolites to protein content and rennet-induced coagulation properties were demonstrated. Metabolites associated with the prediction of total protein content included choline, N-acetyl hexosamines, creatinine, glycerophosphocholine, glutamate, glucose 1-phosphate, galactose 1-phosphate, and orotate. In addition, levels of lactate, acetate, glutamate, creatinine, choline, carnitine, galactose 1-phosphate, and glycerophosphocholine were significantly different when comparing noncoagulating and well-coagulating milks. These findings suggest that the mentioned metabolites are associated with milk protein content and rennet-induced coagulation properties and may act as quality markers for cheese milk. 相似文献