首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Presynchronization strategies, such as Presynch-Ovsynch and Double-Ovsynch, increase fertility to timed artificial insemination (TAI) compared with Ovsynch alone; however, simpler presynchronization strategies could reduce costs and simplify reproductive management. Lactating Holstein cows (n = 601) were randomly assigned to 1 of 2 presynchronization treatments before beginning an Ovsynch-56 protocol (GnRH at 70 ± 3 DIM, PGF 7 d later, GnRH 56 h after PGF, and TAI 16 h later at 80 ± 3 DIM) for first TAI. Cows (n = 306) in the first treatment (Double-Ovsynch; DO) were presynchronized using a modified Ovsynch protocol (GnRH at 53 ± 3 DIM, 7 d later PGF, and GnRH 3 d later) ending 7 d before the first GnRH injection (G1) of an Ovsynch-56 protocol. Cows (n = 295) in the second treatment (GGPG) were presynchronized using a single injection of GnRH 7 d before G1 of an Ovsynch-56 protocol at 63 ± 3 DIM. Blood samples were collected at G1 and the PGF injections of the Ovsynch-56 protocol to determine progesterone (P4) concentrations. Pregnancy diagnosis was performed using ultrasonography 32 d after TAI, and pregnant cows were reexamined 46 and 70 d after TAI. Overall, DO cows had more pregnancies per artificial insemination (P/AI) compared with GGPG cows 32 d after TAI (53 vs. 43%). Overall, P/AI did not differ by parity (primiparous vs. multiparous), and pregnancy loss did not differ between treatments or parities. More DO cows had P4 in a medium range (>0.5 to <4 ng/mL) at G1 of the Ovsynch-56 protocol compared with GGPG cows (82 vs. 50%), and more DO cows had high P4 (>4 ng/mL) at the PGF injection of the Ovsynch-56 protocol compared with GGPG cows (67 vs. 36%). Thus, presynchronization with a modified Ovsynch protocol increased P/AI after TAI at first AI by increasing synchrony to the Ovsynch-56 protocol compared with presynchronization using a single injection of GnRH.  相似文献   

2.
Based on previous research, we hypothesized that Cosynch at 72 h [GnRH−7 d−PGF2α;−72 h−GnRH + artificial insemination (AI)] would result in a greater number of pregnancies per AI (P/AI) than Cosynch at 48 h. Further, we hypothesized that P/AI would be improved to a greater extent when GnRH was administered at 56 h after PGF2α; before AI at 72 h due to a more optimal interval between the LH surge and AI. Nine hundred twenty-seven lactating dairy cows (n = 1,507 AI) were blocked by pen, and pens rotated through treatments. All cows received GnRH followed 7 d later by PGF2α; and then received one of the following: 1) GnRH + timed AI 48 h after PGF2α; (Cosynch-48); 2) GnRH 56 h after PGF2α; + timed AI 72 h after PGF2α; (Ovsynch-56); or 3) GnRH + timed AI 72 h after PGF2α; (Cosynch-72). Pregnancy diagnoses were performed by ultrasound at 31 to 33 d post-AI and again at 52 to 54 d post-AI. Overall P/AI were similar for the Cosynch-48 (29.2%) and Cosynch-72 (25.4%) groups. The Ovsynch-56 group had a greater P/AI (38.6%) than Cosynch-48 or Cosynch-72. Presynchronized first-service animals had greater P/AI than cows at later services in Cosynch-48 (36.2 vs. 23.0%) and Ovsynch-56 (44.8 vs. 32.7%) but not in Cosynch-72 (24.6 vs. 26.2%). Similarly, primiparous cows had greater P/AI than multiparous cows in Cosynch-48 (34.1 vs. 22.9%) and Ovsynch-56 (41.3 vs. 32.6%), but not Cosynch-72 (29.8 vs. 25.3%). In conclusion, we found no advantage to Cosynch at 72 h vs. 48 h. In contrast, we found a clear advantage to treating with GnRH at 56 h, 16 h before a 72 h AI, probably because of more-optimal timing of AI before ovulation.  相似文献   

3.
To evaluate the efficacy of two hormonal protocols for synchronization of ovulation and timed artificial insemination (TAI) in dairy cows managed in grazing-based dairies, lactating dairy cows (n = 142) from two grazing-based dairies were randomly assigned to one of three treatment groups. Cows in the first group (Ovsynch) received 50 microg of GnRH (d -10); 25 mg of PGF2alpha (d -3), and 50 microg of GnRH (d -1) followed by timed AI on d 0. Cows in the second group (PGF + Ovsynch) received a modified Ovsynch and timed AI similar to Ovsynch but with the addition of 25 mg of PGF2alpha 12 d (d -22) before initiation of Ovsynch. Cows in the third group (control) received standard reproductive management in place on each farm. Luteolysis occurred in 90.5% of cows exhibiting luteal function on d -22 in the PGF + Ovsynch treatment group, whereas none of the cows in the Ovsynch group underwent luteolysis on d -22. Synchronization rate (i.e., ovulatory response at 48 h after the second GnRH injection), conception rates at TAI and pregnancy rates after 35 d of breeding were similar for cows in the Ovsynch and PGF + Ovsynch groups. The proportion of anovular cows at the first GnRH injection of the synchronization protocols (d -10) was similar for cows receiving Ovsynch (28.0%) and PGF + Ovsynch (30.7%), and conception rate at TAI was similar for cycling (45.8%) and anovular (30.0%) cows. The cumulative pregnancy rate was greater for cows receiving TAI compared with control cows after 7 d of breeding (41.2 vs. 20.0%) but did not differ at 35 d of breeding (54.9 vs. 60.0%). Administration of PGF2alpha 12 d before initiation of Ovsynch did not improve synchronization, conception, or pregnancy rate compared with the standard Ovsynch protocol. Synchronization of ovulation to initiate timed AI at the onset of the breeding season resulted in earlier establishment of pregnancy compared with standard reproductive management.  相似文献   

4.
The objective of this study was to compare circulating progesterone (P4) profiles and pregnancies per AI (P/AI) in lactating dairy cows bred by timed artificial insemination (TAI) following Ovsynch-56 after 2 different presynchronization protocols: Double-Ovsynch (DO) or Presynch-Ovsynch (PS). Our main hypothesis was that DO would increase fertility in primiparous cows, but not in multiparous cows. Within each herd (n = 3), lactating dairy cows (n = 1,687; 778 primiparous, 909 multiparous) were randomly assigned to DO [n = 837; GnRH-7d-PGF-3d-GnRH-7d-Ovsynch-56 (GnRH-7d-PGF-56h-GnRH-16hTAI)] or PS (n = 850; PGF-14d-PGF-12d-Ovsynch-56). In 1 herd, concentrations of P4 were determined at the first GnRH (GnRH1) of Ovsynch-56 and at d 11 after TAI (n = 739). In all herds, pregnancy was diagnosed by palpation per rectum at 39 d. In 1 herd, the incidence of late embryo loss was determined at 74 d, and data were available on P/AI at the subsequent second service. Presynchronization with DO reduced the percentage of animals with low P4 concentrations (<0.50 ng/mL) at GnRH1 of Ovsynch-56 (5.4 vs. 25.3%, DO vs. PS). A lesser percentage of both primiparous and multiparous cows treated with DO had low P4 concentrations at GnRH1 of Ovsynch-56 (3.3 vs. 19.7%, DO vs. PS primiparous; and 8.8 vs. 31.9%, DO vs. PS multiparous). Presynchronization with DO improved P/AI at the first postpartum service (46.3 vs. 38.2%, DO vs. PS). Statistically, a fertility improvement could be detected for primiparous cows treated with DO (52.5 vs. 42.3%, DO vs. PS, primiparous), but only a tendency could be detected in multiparous cows (40.3 vs. 34.3%, DO vs. PS, multiparous), consistent with our original hypothesis. Presynchronization treatment had no effect on the incidence of late embryo loss after first service (8.5 vs. 5.5%, DO vs. PS). A lower body condition score increased the percentage of cows with low P4 at GnRH1 of Ovsynch-56 and reduced fertility to the TAI. In addition, P4 concentration at d 11 after TAI was reduced by DO. The method of presynchronization at first service had no effect on P/AI at the subsequent second service (34.7 vs. 36.5%, DO vs. PS). Thus, presynchronization with DO induced cyclicity in most anovular cows and improved fertility compared with PS, suggesting that DO could be a useful reproductive management protocol for synchronizing first service in commercial dairy herds.  相似文献   

5.
Lactating dairy cows (n = 228) in a semiseasonal, grazing-based dairy were subjected to artificial insemination (AI) to start the 23-d breeding season (d 0 to 22) followed by natural service (d 23 to 120). Cows were randomly assigned to: 1) Ovsynch (GnRH, d -10; PGF2,, d -3; GnRH, d -1; timed AI, d 0) followed by AI at estrus (tail paint removal) on d 1 to 22 (Ovsynch; n = 114); or 2) AI at estrus (tail paint removal) throughout 23 d of AI breeding (tail paint; n = 114). Days to first AI service were greater and the 23-d AI service rate was less for tail paint vs. Ovsynch cows (12.0 +/- 0.6 d vs. 0 d; and 84.2 vs. 100%, respectively). However, conception to first AI was greater for tail paint vs. Ovsynch cows (47.3 vs. 27.3%, respectively). Cows in the tail paint group received only one AI, during 23 d of AI, but 46.4% of Ovsynch cows received a second AI, with similar conception (43.1%) to that of tail paint cows at first AI (47.3%). Based on serum progesterone, incomplete luteal regression after PGF2alpha, and poor ovulatory responses to GnRH contributed to lower conception to timed AI in the Ovsynch group. Cumulative pregnancy rates for tail paint and Ovsynch cows did not differ after 23 d of AI breeding (47.3 vs. 46.3%, respectively) nor after 120 d of AI/ natural service breeding (80.5 vs. 83.3%, respectively). Lactating cows in this grazing-based dairy synchronized poorly to Ovsynch resulting in reduced conception to timed AI compared with AI after tail paint removal.  相似文献   

6.
Our objective was to determine whether progesterone (P4) supplementation during an Ovsynch protocol would enhance fertility in lactating dairy cows. Lactating dairy cows (n = 634) at 6 locations were assigned randomly within lactation number and stage of lactation to receive the Ovsynch protocol [OVS; synchronization of ovulation by injecting GnRH 7 d before and 48 h after PGF2α, followed by one fixed-time AI (TAI) 16 to 20 h after the second GnRH injection] or Ovsynch plus a controlled internal drug release (CIDR) P4-releasing insert for 7 d, beginning at the first GnRH injection (OVS + CIDR). Blood was sampled to quantify P4 10 d before the first GnRH injection, immediately before the first GnRH injection, at the time of CIDR removal, before the PGF2α injection (1 to 2 h after CIDR insert removal), and 48 h after the PGF2α injection to determine cyclicity status before initiation of treatment, luteal status at the PGF2α injection, and incidence of luteal regression. Overall, conception rates at 28 (40 vs. 50%) and 56 d (33 vs. 38%) after TAI differed between OVS and OVS + CIDR, respectively; but a treatment × location interaction was detected. Compared with OVS, pregnancy outcomes were more positive for OVS + CIDR cows at 4 of 6 locations 28 d after TAI and at 3 of 6 locations 56 d after TAI. An interaction of luteal status (high vs. low) before CIDR insert removal and PGF2α injection with pretreatment cycling status indicated that cows having low P4 at PGF2α injection benefited most from P4 supplementation (OVS + CIDR = 36% vs. OVS = 18%), regardless of pretreatment cycling status. Pregnancy loss between 28 and 56 d after TAI was greater for noncycling cows (31%) compared with cycling cows (16%). Pregnancy loss for cows receiving P4 (21%) did not differ from that for cows not receiving P4 (21%). Supplementation of P4, pretreatment cycling status, and luteal status before PGF2α injection altered follicular diameters at the time of the second GnRH injection, but were unrelated to pregnancy outcomes. Incidence of multiple ovulation was greater in noncycling than in cycling cows. Further, cows having multiple ovulations had improved pregnancy outcomes at 28 and 56 d after TAI. In summary, a CIDR insert during the Ovsynch protocol increased fertility in lactating cows having low serum P4 before PGF2α injection. Improved pregnancy outcomes were observed at some, but not all locations.  相似文献   

7.
The Ovsynch protocol was designed to synchronize ovulation, thereby allowing timed artificial insemination (TAI) of all cows without detection of estrus. However, the effectiveness of Ovsynch in different breeds of dairy cows has not been previously compared. The aim of this study was to compare the response to Ovsynch in cycling lactating Holstein-Friesian (HF) and Swedish Red (SR) dairy cows. A total of 495 cyclic cows (n = 347 HF, n = 148 SR) were housed together and treated with Ovsynch (GnRH - 7 d - PGF - 56 h - GnRH - 16 to 18 h - TAI). Ovulatory responses, synchronization rate, maximal follicle size at the time of AI, and percentage of pregnant cows per AI (P/AI at 31 and 62 d after AI) were compared between breeds. Ultrasonography was performed during Ovsynch at first GnRH, PGF, at time of AI, and 7 d after AI. Ovulatory response and synchronization rate were similar in HF versus SR cows (60.2 vs. 62.2%; 88.4 vs. 88.5%, respectively). Cows that ovulated to the first GnRH of Ovsynch had smaller follicle size at AI (15.9 ± 0.1 vs. 16.4 ± 0.2 mm). Maximal follicle size at AI was greater for HF (16.4 ± 2.2 mm) than SR (15.5 ± 2.3 mm) cows. The P/AI was greater for SR than HF cows at the 62-d pregnancy diagnosis (56.1 vs. 46.1%). In addition, pregnancy loss between 31 and 62 d of pregnancy was greater in HF (10.1%) than SR (3.5%) cows. Fertility was less in HF cows during the hot season (57.7 in cold vs. 38.1% in the hot season), whereas such a decrease was not observed in SR (60.0 in cold vs. 53.5% in the hot season) cows. Thus, although the GnRH treatments of Ovsynch were equally effective in SR and HF cows, pregnancy outcomes (P/AI at d 62 and pregnancy survival) were greater in SR than HF cows, and P/AI in SR cows was not compromised during the hot season as was found for HF cows.  相似文献   

8.
This study was designed to evaluate whether decreasing circulating progesterone (P4) or increasing circulating estradiol-17β (E2) near the time of artificial insemination (AI) in an Ovsynch protocol would increase pregnancies per AI (P/AI) in lactating dairy cows. Six hundred nineteen lactating Holstein cows (n = 772 inseminations) received Ovsynch (GnRH-7 d-PGF-56 h-GnRH-16 h-timed AI). Cows were randomized in a 2 × 2 factorial experiment of 4 treatments to receive or not receive 25 mg of PGF 24 h after the standard PGF of Ovsynch, or 0.5 mg of E2 at the time of the final GnRH of Ovsynch, or both. Blood samples were collected 24 h after normal PGF and at final GnRH to evaluate circulating P4. Ovarian ultrasound was done at final GnRH to determine preovulatory follicle size. Ovulation was confirmed by ultrasound 5 d after AI. Treatment with additional PGF increased the percentage of cows that had complete luteal regression (95.6%) compared with control cows (84.6%). In contrast, additional PGF had no detectable effect on P/AI (control = 41.5% vs. + PGF = 44.7%). Supplementation with E2 increased expression of estrus (84.4 vs. 37.2%), but had no effect on overall fertility and even tended to have a negative effect on fertility in cows that ovulated to the second GnRH (control = 51.5% vs. +E2 = 44.0%). Thus, additional treatments with PGF or E2 during Ovsynch can be used to increase synchronization and expression of estrus during Ovsynch, although the lack of improvement in fertility makes these treatments unwarranted.  相似文献   

9.
The objectives of this study were to evaluate effects of 2 resynchronization protocols beginning at different intervals after artificial insemination (AI) on the pattern of return to estrus, ovarian responses, and pregnancy per AI (P/AI) to reinsemination. Lactating cows from 2 dairies, located in Texas (n = 2,233) and Minnesota (n = 3,077), were assigned to 1 of 4 timed AI (TAI) protocols 17 ± 3 d after AI. All cows were examined for pregnancy 31 ± 3 d after previous AI. Cows assigned to early Ovsynch56 (E-OV56) or OV56 received the Ovsynch56 protocol starting 24 or 31 d after AI, respectively. Cows assigned to early GnRH-GnRH-PGF-GnRH (E-GGPG) or GGPG received a presynchronizing GnRH injection 17 or 24 d after AI, respectively, 7 d before the start of the Ovsynch56 protocol. Cows observed in estrus after enrollment were inseminated on the same day. Ovaries were examined and blood was sampled for progesterone concentration on the day of first GnRH and PGF injection of the Ovsynch56 protocol. Pregnancy was diagnosed at 31 and 66 d after resynchronized AI. On the day of the first GnRH injection of the TAI, a higher percentage of cows on E-GGPG and GGPG protocols had a corpus luteum (E-GGPG = 83.8, GGPG = 91.2, E-OV56 = 80.4, and OV56 = 75.5%) and progesterone concentration >1 ng/mL (E-GGPG = 62.5, GGPG = 76.0, E-OV56 = 53.6, and OV56 = 60.8%) than cows assigned to other protocols. However, the percentage of cows ovulating to the first GnRH injection of TAI was not affected by treatment. Fewer E-GGPG and more OV56 cows were reinseminated in estrus (E-GGPG = 23.7, GGPG = 49.0, E-OV56 = 41.6, and OV56 = 57.6%). Treatment did not affect P/AI at 31 or 66 d for cows reinseminated in estrus. However, cows reinseminated in estrus had greater P/AI at 31 (40.0 vs. 27.5%) and 66 d (36.0 vs. 23.9%) than cows completing the TAI protocols. Among cows completing the TAI protocols, initiation of GGPG at 24 d after AI increased, whereas initiation of Ovsynch56 at 24 d after AI decreased P/AI at 31 d after reinsemination (E-GGPG = 30.6, GGPG = 28.3.0, E-OV56 = 22.3, and OV56 = 28.7%). Pregnancy per AI did not differ across treatment at 66 d after TAI (E-GGPG = 26.6, GGPG = 24.4, E-OV56 = 20.0, and OV56 = 24.1%). Overall, type of resynchronization protocol and protocol initiation time did not affect P/AI 66 d after reinsemination (E-GGPG = 29.7, GGPG = 30.5, E-OV56 = 26.1, and OV56 = 30.4%). In conclusion, GGPG resynchronization protocols and initiation of resynchronization protocol 24 d after AI reduced the number of cows reinseminated in estrus but neither the timing of initiation of resynchronization nor presynchronization with GnRH affected overall P/AI.  相似文献   

10.
We hypothesized that increasing concentrations of progesterone (P4) after artificial insemination would increase fertility. Our objective was to assess changes in ovarian structures, incidence of ovulation, and change in serum P4 in response to GnRH, human chorionic gonadotropin (hCG), or exogenous P4 (controlled internal drug release; CIDR insert) treatment beginning 4 to 9 d after artificial insemination (d 0) and again 7 d later (experiment 1). Blood was collected from 753 cows in 3 herds on d 0 and 7. Ovaries of 162 cows were scanned and mapped to confirm the presence of a corpus luteum (CL), and cows were assigned randomly to serve as controls (n = 41) or to receive a CIDR insert for 7 d (n = 41), 100 μg of GnRH (n = 40), or 3,300 IU of hCG (n = 40). More cows were induced to ovulate in response to GnRH (60%) and hCG (78%) compared with controls (2.4%). Compared with controls, cows treated with GnRH or hCG had more induced CL (d 7) and more total CL (d 7), but serum P4 was increased only in response to hCG. Largest follicle diameters on d 7 were less after GnRH and hCG, but total follicular volume on d 7 was reduced by GnRH, hCG, and CIDR, compared with that of controls. Volume of the original luteal structures was increased by hCG but tended to be reduced by CIDR and GnRH compared with luteal volume in controls. Total CL volume was increased by hCG, but reduced by CIDR, compared with CL volume of controls. Conception rates and pregnancy survival were assessed in response to the same treatments described in experiment 1: controls (n = 708), CIDR (n = 711), GnRH (n = 719), and hCG (n = 714). Tendencies for interactions of treatment × herd and treatment × lactation group were detected, but no 3-way interactions were found. Treatment with hCG increased conception rates in second-lactation cows. The CIDR tended to increase, and hCG increased, conception rates in 2 herds, whereas the CIDR decreased conception rates in 1 herd. Pregnancy survival was reduced by GnRH compared with that in controls. We concluded that GnRH and hCG effectively induced ovulation, and increased number of CL, but only increased serum P4 in hCG-treated cows. Further, treatment with the CIDR or hCG increased conception rates but only in some herds.  相似文献   

11.
A protocol for presynchronization of ovarian status with 2 injections of PGF given 14 d apart, with the last PGF injection given 12 or 14 d before Ovsynch increases pregnancy per artificial insemination (P/AI) in dairy cows. We determined the efficacy of reducing the interval from the last PGF injection (500 μg of cloprostenol) of presynchronization to initiation of Ovsynch on response to treatment and P/AI. Lactating dairy cows were assigned to an Ovsynch protocol, with the initial injection of GnRH given either 9 (PRE-9; n = 135) or 12 d (PRE-12; n = 135) after the second PGF injection of presynchronization. The Ovsynch protocol consisted of 2 injections of 100 μg of GnRH given 9 d apart and 1 injection of PGF given 7 d after the initial GnRH injection, and cows were subjected to timed artificial insemination (TAI; 70 ± 3.5 DIM) approximately 16 h after the second GnRH injection. Body condition score (1–5 scale) was recorded at TAI. Blood samples were taken for progesterone determination at the PGF injection of Ovsynch, at TAI, and at 11 d after TAI. Ultrasonographic examinations were done in all cows at the second PGF injection of presynchronization, initial GnRH injection, PGF injection of Ovsynch, at TAI, and 24 h after TAI for cyclicity status and ovarian responses to treatments, and at 32 and 60 d after TAI for confirmation of pregnancy. Overall, 29 cows (10.7%) were determined acyclic or cystic and excluded from the study. The percentage of cows responding to initial GnRH injection (62.2 vs. 61.5%) did not differ between PRE-9 and PRE-12 but more cows in the PRE-9 group failed to respond to PGF treatment of Ovsynch compared with PRE-12 (22.7 vs. 10.7%). Body condition score at TAI (2.9 ± 0.02) and mean ovulatory follicle diameter (16.4 ± 0.2 mm) were not different between treatments. Overall P/AI at 32 d was reduced in PRE-9 (33.6%) compared with PRE-12 (44.3%) but pregnancy losses (5.0 vs. 3.7%) did not differ between treatments. Primiparous cows in the PRE-12 group had higher mean progesterone concentration 11 d after TAI and greater P/AI 32 after TAI than primiparous cows in the PRE-9 group (6.4 ± 0.5 vs. 4.6 ± 0.5 ng/mL and 55.8 vs. 30.0%, respectively). In conclusion, reducing the interval from the last PGF injection of the presynchronization treatment to initiation of Ovsynch (from 12 to 9 d) did not affect ovulatory response to initial GnRH injection but reduced response to PGF injection of Ovsynch and P/AI at 32 and 60 d after TAI. The reduction in P/AI was particularly evident in primiparous cows of the PRE-9 group.  相似文献   

12.
Luteolysis is a key event in Ovsynch programs of lactating dairy cows. Studies indicate that as many as 20% of cows treated with a Presynch/Ovsynch program have delayed or incomplete luteolysis using dinoprost tromethamine. Cows must have complete luteolysis to have a chance to become pregnant. Dinoprost tromethamine has a short half-life of approximately 7 to 8 min. Cloprostenol sodium is more resistant to endogenous metabolism and is maintained in circulation for a longer time (half-life = 3 h). The objective was to determine if cloprostenol sodium could increase the percentage of cows with complete luteolysis and subsequent pregnancy per artificial insemination (P/AI) in lactating dairy cows compared with dinoprost tromethamine when administered within a presynchronization plus Ovsynch program for first artificial insemination (n = 652) and an Ovsynch resynchronization program for second or later AI (second+; n = 394). Blood samples were collected daily for 5 d beginning at the PGF of Ovsynch in a subset of cows (n = 680) for first and second+ AI to measure circulating concentrations of progesterone (P4) and estradiol (E2). Complete luteolysis was defined as cows with functional corpus luteum (CL) at time of treatment and serum concentrations of P4 <0.5 ng/mL at 56, 72, and 96 h after treatment. Percentage of cows with functional CL that had complete luteolysis after treatment was not greater for cloprostenol sodium compared with dinoprost tromethamine in first (79 vs. 80%, respectively) or second+ AI (70 vs. 72%, respectively). In addition, mean serum concentrations of P4 were not less for cows treated with cloprostenol sodium following treatment. Pregnancy per AI of cows treated with cloprostenol sodium tended to be greater than dinoprost tromethamine for first (40 vs. 35%; respectively) but not second+ AI (23 vs. 21%, respectively). Cows with greater serum P4 concentrations at time of PGF of Ovsynch had a greater probability of undergoing complete luteolysis after PGF of Ovsynch and pregnancy at 39 d after timed AI (i.e., 50% pregnant at 8 vs. 28% pregnant at 4 ng/mL P4). Serum concentrations of E2 at 56 h after PGF of Ovsynch were a positive predictor of pregnancy at 39 d after timed AI. In summary, cloprostenol sodium tended to improve P/AI. Cows with greater serum concentrations of P4 at time of PGF of Ovsynch had a greater chance of luteolysis and pregnancy.  相似文献   

13.
《Journal of dairy science》2023,106(1):755-768
Our objective was to evaluate the effect of 3 different Ovsynch protocols on progesterone (P4) and pregnancies per artificial insemination (P/AI), where all cows received a P4 releasing intravaginal device (PRID) from d 0 until d 8. We hypothesized that (1) both modified PGF treatments lead to decreased P4 at the second GnRH treatment (G2), resulting in greater P/AI, (2) the treatment effect is influenced by the presence of a corpus luteum (CL) at the beginning of the protocol, and (3) potential vaginal discharge caused by the PRID does not have a negative influence on fertility. Lactating Holstein cows (n = 1,056) were randomly assigned to 1 of 3 treatment groups on a weekly basis (n = 356; control: d 0, 100 µg of GnRH + PRID; d 7, 25 mg of dinoprost; d 8, PRID removal; d 9, 100 µg of GnRH). Cows in the second group (n = 353) received an Ovsynch protocol with a double dose of PGF (DoubleDose: d 0, 100 µg of GnRH + PRID; d 7, 50 mg of dinoprost; d 8, PRID removal; d 9, 100 µg of GnRH). Cows in the third group (n = 347) received an Ovsynch protocol with a second PGF treatment 24 h after the first one (2PGF: d 0, 100 µg of GnRH + PRID; d 7, 25 of mg dinoprost; d 8, 25 mg of dinoprost and PRID removal; d 9, 100 µg of GnRH). All cows had their ovaries scanned to determine the presence of a CL at the beginning of the Ovsynch protocol. Vaginal discharge score (VS) was evaluated at PRID removal. All cows received timed artificial insemination approximately 16 h after G2. Pregnancy diagnosis was performed via transrectal ultrasonography (d 38 ± 3 after timed artificial insemination) and rechecked on d 80 ± 7 after timed artificial insemination. Blood samples were collected on d 0, 7, and 9 of the protocol to determine P4 concentrations. Treatment affected P4 at G2. Progesterone was lower for 2PGF and DoubleDose cows compared with cows in the control group (control 0.35 ± 0.02 ng/mL; DoubleDose 0.29 ± 0.02 ng/mL; 2PGF 0.30 ± 0.02 ng/mL). Overall, P/AI did not differ among treatments. We found, however, an interaction between treatment and CL at the first GnRH treatment. Cows lacking a CL at the first GnRH treatment in the 2PGF group had greater P/AI (47.9%) compared with the same type of cows in the DoubleDose group (32.7%). We observed an effect of VS on P4 concentration at d 7. We found an increase in P4 with greater VS. Vaginal discharge score at PRID removal tended to have a positive effect on P/AI at d 38 (VS0: 36.5%; VS1: 41.3%; VS2: 49.7%). In conclusion, the addition of a second PGF treatment on d 7 and 8 of a 7-d Ovsynch protocol increased luteal regression and decreased mean P4 at G2. Cows treated with PGF 2 times 24 h apart showed greater P/AI, compared with cows treated with an increased dose of PGF.  相似文献   

14.
Two experiments were conducted to determine the effect of estradiol cypionate (ECP), when incorporated into a conventional GnRH-PGF2α-GnRH timed artificial insemination protocol (Ovsynch), on systemic estradiol (E2), time and incidence of ovulation, luteal development, and conception rate in Holstein cows. Our objective was to determine if administration of 0.25 mg of ECP at the time of the second GnRH injection would effectively synchronize ovulation and increase conception rate. In Experiment 1, lactating Holstein cows (n = 23; 58.7 ± 1.2 d in milk) were synchronized with PGF2α (at d −10). Ten days later, Ovsynch was initiated with the administration of 100 μg of GnRH (d 0) followed by PGF2α on d 7. On d 9, cows were assigned randomly to be treated with either GnRH + 0.25 mg of ECP (OVS-ECP; n = 11) or GnRH and 1 mL of cottonseed oil (OVS-C; n = 12). Ovarian activity was monitored by ultrasonography on d 0, 7, and 9. To determine the time of ovulation, ultrasound examinations were conducted at 12 and 20 h posttreatment and then at least every 3 h until either 36 h posttreatment or ovulation was observed. Blood samples were collected on d 0, 7, 9, and 16 for progesterone analysis. Blood samples also were collected at the time of treatment (d 9, 0 h) and at 6, 12, 20, and 28 h for E2 analysis. Incidence of ovulation did not differ between treatments. Mean ovulation time relative to the second GnRH administration was similar between treatments. Serum progesterone concentration did not differ between treatments at any time. Serum E2 concentration was not different at the time of treatment (0 h); however, mean E2 concentration was greater for the OVS-ECP group at 6 and 12 h after treatment compared with OVS-C. In Experiment 2, lactating dairy cows (n = 333) in 3 commercial herds were randomly assigned to OVS-ECP (n = 169) or OVS-C (n = 164). Cows were inseminated 22 to 24 h posttreatment. Conception rates did not differ between treatments. Estradiol cypionate treatment was successful in increasing serum E2 when administered at the time of the second dose of GnRH in the Ovsynch protocol. Conception rates, however, were not affected by treatment.  相似文献   

15.
The objectives of this study were to evaluate the effects of method of presynchronization and source of supplemental Se on uterine health and reproductive performance of lactating dairy cows. Holstein cows (n = 512) were assigned randomly to 2 methods of presynchronization, Presynch (2 PGF2a given 14 d apart) or CIDR-PS (controlled internal drug releasing inserted for 7 d with an injection of PGF2a at removal) and 2 sources of Se, sodium selenite (SS) or selenized yeast (SY) supplemented at 0.3 mg/kg from 25 d before calving to 80 d in milk (DIM) arranged in a 2 × 2 factorial. Cows were inseminated following the Ovsynch protocol (d 0 GnRH, d 7 PGF2a, d 9 GnRH, timed artificial insemination (AI) 12 h after the final GnRH) starting at 12 and 3 d after Presynch and CIDR-PS, respectively. Cows were diagnosed for pregnancy at 28, 42, and 56 d after AI. Source of Se did not influence uterine health and resumption of cyclicity, but fewer CIDR-PS than Presynch cows were cyclic at the beginning of the Ovsynch, although differences in the proportion cyclic may have been caused by the timing when corpus luteum evaluations were performed in the different pre-synchronization treatments. Ovulatory responses were not influenced by source of Se. However, the CIDR-PS increased ovulation to the first GnRH, double ovulation to the final GnRH, and size of ovulatory follicle at PGF2a and final GnRH of the Ovsynch, but did not influence ovulation at the final GnRH of the Ovsynch. Concentrations of estradiol during the Ovsynch increased with follicle diameter and were greater for cows receiving CIDR-PS than Presynch, but they were not influenced by source of Se. Pregnancy per AI on d 28 (32.7%), 42 (28.5%), and 56 (25.9%) after AI, and pregnancy loss (20.5%) from 28 to 56 d were not influenced by source of Se or method of presynchronization. Although cows receiving CIDR-PS had an increased incidence of ovulation to the first GnRH (73.2 vs. 57.8%) and double ovulation to the final GnRH of the Ovsynch (18.7 vs. 9.0%), both of which enhanced pregnancy, the CIDR-PS protocol did not improve pregnancy per AI or reduce pregnancy loss compared with presynchronization with PGF2a alone.  相似文献   

16.
The objective of this study was to evaluate the effects of different Ovsynch protocols combined with progesterone (P4) supplementation after artificial insemination (AI) of Holstein-Friesian cows. Cows were randomly synchronized at 52 to 63 d after parturition with either the classical Ovsynch protocol (GnRH on d 0, PGF(2α) on d 7, GnRH 48 h after PGF(2α)) or with a modified Ovsynch protocol (second GnRH 60 h after PGF(2α)). On d 4 after timed AI (TAI), the cows were blocked by parity and randomly divided into 2 groups. Half of the cows were supplemented with P4 (P4+) by applying a P4-releasing intravaginal device intravaginally for 14 d, whereas the other half remained untreated (P4-). In 50% of randomly chosen cows, plasma P4 was measured on d 4, 5, and 18 after TAI. Sonographic pregnancy diagnosis was performed on d 33 after TAI in a total of 398 cows. Health status and body condition score (BCS) of all cows were examined at several stages of the study. Cows in the modified Ovsynch protocol tended to have higher P4 values on d 4 after TAI than cows in the classical Ovsynch protocol (2.1 ± 0.2 vs. 1.6 ± 0.2 ng/mL), but no difference in pregnancy per AI (P/AI) was observed between the 2 Ovsynch protocols (38.4% vs. 44.1%). Independent of the Ovsynch protocols, P4+ cows tended to have higher P/AI compared with P4- cows (44.4% vs. 38.1%). The retention of fetal membranes and BCS at the time of insemination affected P/AI. Moreover, an interaction between BCS at the time of insemination and P4 supplementation was apparent; that is, the difference in P/AI between P4+ and P4- cows was significant in cows with BCS ≥3.25. Progesterone-supplemented cows showed higher P4 values on d 5 (4.9 ± 0.2 vs. 2.6 ± 0.2) and d 18 (7.8 ± 0.2 vs. 6.3 ± 0.2) after TAI, respectively. In conclusion, the elongation of the time interval between the injections of PGF(2α) and the second GnRH from 48 to 60 h had no effect on P/AI. Progesterone supplementation after insemination improved the P/AI of the Ovsynch protocols, but this effect was more apparent in cows with BCS ≥3.25.  相似文献   

17.
Lactating dairy cows (n = 1,538) were enrolled in a randomized complete block design study to evaluate protocols to synchronize estrus and ovulation. Within each herd (n = 8), cows were divided into 3 calving groups: early, mid, and late, based on days in milk (DIM) at mating start date (MSD). Early calving cows (n = 1,244) were ≥42 DIM at MSD, mid-calving cows (n = 179) were 21 to 41 DIM at MSD, and late-calving cows (n = 115) were 0 to 20 DIM at MSD. Cows in the early, mid-, and late-calving groups were synchronized to facilitate estrus or timed AI (TAI) at MSD (planned breeding 1; PB1), 21 d (PB2), and 42 d (PB3) after MSD, respectively. For each PB, cows in the relevant calving group were stratified by parity and calving date and randomly assigned to 1 of 4 experimental groups: (1) d −10 GnRH (10 μg of i.m. buserelin) and controlled internal drug release insert (CIDR; 1.38 g of progesterone); d −3 PGF (25 mg of i.m. dinoprost); and d −2 CIDR out and AI at observed estrus (CIDR_OBS); (2) same as CIDR_OBS, but GnRH 36 h after CIDR out and TAI 18 h later (CIDR_TAI); (3) same as CIDR_TAI, but no CIDR (Ovsynch); or (4) untreated controls (CTRL). The CIDR_OBS, CIDR_TAI, and Ovsynch had shorter mean intervals from calving to first service compared with the CTRL (69.2, 63.4, and 63.7 vs. 73.7 d, respectively). Both CIDR_OBS (predicted probability; PP of pregnancy = 0.59) and CIDR_TAI (PP of pregnancy = 0.54) had increased odds of conceiving at first service compared with Ovsynch [PP of pregnancy = 0.45; odds ratio (OR) = 1.81 and OR = 1.46, respectively], and Ovsynch had decreased likelihood of conceiving at first service (OR = 0.70) compared with CTRL (PP of pregnancy = 0.53). Both CIDR_TAI hazard ratio; HR [95% confidence interval = 1.21 (1.04, 1.41)] and Ovsynch [HR (95% confidence interval) = 1.23 (1.05, 1.44)] were associated with an increased likelihood of earlier conception compared with the CTRL. A greater proportion of cows on the CIDR_TAI treatment successfully established pregnancy in the first 42 d of the breeding season compared with the CTRL (0.75 vs. 0.67 PP of 42-d pregnancy, respectively). Protocols to synchronize estrus and ovulation were effective at achieving earlier first service and conception in pasture-based seasonal calving dairy herds. However, animals that conceived following insemination at observed estrus had a decreased likelihood of embryo loss to first service compared with animals bred with TAI (PP of embryo loss after first service = 0.05 vs. 0.09; OR = 0.52).  相似文献   

18.
Synchronization of ovulation (Ovsynch) using GnRH and PGF2 alpha allows control of follicle growth, corpus luteum regression, and ovulation, but resulting pregnancy rates vary. This study examined whether presynchronization to allow initiation of Ovsynch during diestrus would improve pregnancy rates at timed artificial insemination (AI). Lactating dairy cows (n = 427), 69 to 75 d postpartum, were randomly assigned to two groups by parity. Control cows received Ovsynch (GnRH, d 0; PGF2 alpha, d 7; GnRH, d 9; timed AI 16 h after second GnRH). Treated cows received presynchronization injections of PGF2 alpha and GnRH, 10 and 7 d, respectively, before starting Ovsynch. Pregnancy diagnoses were performed 36 d after AI. Progesterone (P4) concentrations from a subset of cows (n = 84) were determined in serum samples collected on d 0, 3, and 7 of Ovsynch. Presynchronization increased the percentages of cows with > or = 1 ng/ml serum P4 compared with control cows at first injection of GnRH (d 0; 93 vs. 56%) and on d 3 (90.7 vs. 51.2%) during Ovsynch. On day of PGF2 alpha, d 7 during Ovsynch, percentages of cows with > or = 1 ng/ml serum P4 were similar (95.3%, treated vs. 82.9%, control) but more treated cows had > or = 2 ng/ml serum P4 (95.3 vs. 63.4%). However, pregnancy to timed AI was similar between treated (41.5%) and control cows (38.3%). Cows with above-average milk production had greater pregnancy rate (45.8 vs. 33.8%) compared with lower producing cows. Although presynchrony increased the proportion of cows with luteal function at onset of Ovsynch, pregnancy rate to timed AI was not improved. Cows with above-average milk production had greater fertility at timed AI than herdmates with lower milk production.  相似文献   

19.
Ovulatory response to the first GnRH of Ovsynch is the critical determinant for successful synchronization of ovulation in dairy cows. Our objective in this study was to develop a pre-Ovsynch treatment that increased the percentage of cows that ovulated in response to the first GnRH injection of Ovsynch. To accomplish our goal, we evaluated a hormonal strategy that consisted of PGF2α and GnRH before the first GnRH of Ovsynch. Lactating dairy cows (n = 137) were assigned to receive either no treatment before Ovsynch (control) or 25 mg of PGF2α (PreP) followed 2 d later by 100 μg of GnRH (PreG), administered 4 (G4G), 5 (G5G), or 6 (G6G) d before initiating the Ovsynch protocol. Transrectal ultrasonography was performed to assess follicular size and resulting ovulation, and blood samples were collected to measure circulating concentrations of progesterone and estradiol immediately before each hormonal injection. Cows were inseminated at a fixed time 16 h after final GnRH of Ovsynch. Pregnancy diagnosis was performed 35 d later by palpation per rectum of uterine contents. Proportion of cows that ovulated to first GnRH of Ovsynch was 56.0, 66.7, 84.6, and 53.8% for G4G, G5G, G6G, and controls, respectively, and was greater for G6G than for control cows. Luteolytic response to PGF2α of Ovsynch was greater in all treated than control cows (92.0, 91.7, 96.2, and 69.2% for G4G, G5G, G6G, and control, respectively). Synchronization rate to Ovsynch was greater (92 vs. 69%, respectively) in G6G than in control cows. In addition, cows that ovulated in response to first GnRH of Ovsynch had greater response to PGF2α of Ovsynch (92.7 vs. 77.1%, respectively) and greater synchronization rate to the overall protocol (87.9 vs. 62.9%, respectively) than those that did not ovulate. Concentrations of progesterone at PGF2α of Ovsynch, and estradiol and follicle size at final GnRH of Ovsynch, were identified as significant predictors of probability of pregnancy 35 d after artificial insemination. In summary, a PGF2α-and-GnRH based pre-Ovsynch strategy consisting of a 6-d interval between PreG and first GnRH of Ovsynch resulted in a greater ovulatory and luteolytic response to first GnRH and PGF2α of Ovsynch, respectively, compared with control cows. This, in turn, optimized synchronization rate to Ovsynch.  相似文献   

20.
The objective was to determine the effect of exogenous progesterone (P4) in a timed artificial insemination (TAI) protocol initiated at 2 different times post-AI on pregnancies per AI (P/AI) in lactating dairy cows. Cows (n = 1,982) in 5 dairy herds were assigned randomly at a nonpregnancy diagnosis 32 ± 3 d post-AI to 1 of 4 resynchronization (RES) treatments arranged in a 2 × 2 factorial design using the Ovsynch-56 (GnRH, 7 d later PGF, 56 h later GnRH, 16 h later TAI) protocol. Treatments were as follows: cows initiating RES 32 ± 3 d after AI with no supplemental P4 (d 32 RES-CON; n = 516); same as d 32 RES-CON plus a controlled internal drug release (CIDR) insert containing P4 at the onset of Ovsynch-56 (d 32 RES-CIDR; n = 503); cows initiating RES 39 ± 3 d after AI (d 39 RES-CON; n = 494); and same as d 39 RES-CON plus a CIDR (d 39 RES-CIDR; n = 491). Cows were inseminated if observed in estrus before TAI. The P/AI was determined 32 and 60 d after TAI. In a subgroup of cows (n = 1,152), blood samples were collected and ovarian structures examined by ultrasonography on the days of the first GnRH (G1) and PGF of Ovsynch-56. Percentage of cows with a corpus luteum (CL) at G1 was unaffected by timing of treatments, but percentage of cows with a CL at PGF was greater for d 32 than for d 39 cows (87.9 vs. 79.4%). In addition, percentage of cows with P4 ≥1 ng/mL at G1 was unaffected by timing of treatments, but was increased for d 32 compared with d 39 RES cows on the day of the PGF of the RES protocols (86.5 vs. 74.3%). Treatment did not affect ovulation to G1 or P/AI 32 d after RES TAI (d 32 RES-CON = 30.1%, d 32 RES-CIDR = 28.8%, d 39 RES-CON = 27.5%, d 39 RES-CIDR = 30.5%). A greater percentage of d 39 RES cows underwent premature luteolysis during the RES protocol compared with d 32 RES cows. An interaction was detected between day of RES initiation and CIDR treatment, in which the CIDR increased P/AI 60 d after TAI for d 39 (CON = 23.7% vs. CIDR = 28.0%), but not for d 32 (CON = 26.9% and CIDR = 24.2%) cows. Pregnancy loss was unaffected by treatment. In addition, cows had improved P/AI 60 d after TAI when they received a CIDR and did not have a CL (CON-CL = 28.2%, CON-No CL = 19.2%, CIDR-CL = 27.0%, and CIDR-No CL = 26.5%) or had P4 <1 ng/mL (CON-High P4 = 27.8%, CON-Low P4 = 15.0%, CIDR-High P4 = 25.0%, and CIDR-Low P4 = 29.4%) at G1, but not if a CL was present or P4 was ≥1 ng/mL at G1. In conclusion, addition of a CIDR insert to supplement P4 during the RES protocol increased P/AI for cows initiating RES 39 ± 3 d after AI but not 32 ± 3 d after AI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号