首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The key objectives of this study were to investigate differences in milking characteristics and udder health between Holstein-Friesian (HF), Jersey (J), and Jersey × Holstein-Friesian (F1) cows and to determine possible associations between milking characteristics and udder health. Records were available from 329 lactations (162 cows): 65 HF, 48 J, and 49 F1. Data included lactation mean milk yield, somatic cell score (SCS), incidence of mastitis, average milk flow (AMF), peak milk flow (PMF), and milking duration (MD). Breed group had a significant effect on milk yield and was higher with the HF cows (18.0 kg/d) compared with the J cows (14.2 kg/d). Udder health (SCS and incidence of mastitis at least once during lactation) were similar across the breed groups. Average milk flow was greater with the HF cows (1.36 kg/min) compared with the J cows (1.09 kg/min). Peak milk flow also tended to greater with the HF cows. No difference in MD was observed between the breed groups. The performance of the F1 cows tended to be similar to the mid-parent (breed) mean for udder health and MD, but heterosis was evident for milk yield, AMF, and PMF. Correlations examined showed that phenotypic milk yield was negatively associated with SCS. Increased milk yield was synonymous with increased AMF, PMF, and MD. Correlations between SCS and milking characteristics were weak. Correlations also showed that cows with low AMF and PMF had extended MD. Therefore, no difference in udder health was observed between HF, J, or F1 cows. The fact that higher yielding animals exhibit faster milking speeds was confirmed; however, no difference in MD was observed between the breed groups. Such findings indicate that regularity in the milking process will be maintained within mixed-breed herds.  相似文献   

2.
The objective of this study was to investigate the effect of level of 1) pregrazing herbage mass (HM) and 2) level of daily herbage allowance (DHA) on the performance and fatty acid (FA) composition of milk from grazing dairy cows. Sixty-eight Holstein-Friesian dairy cows were allocated to either a high or low pregrazing HM (1,700 vs. 2,400 kg of DM/ha; >40 mm), and within HM treatment, cows were further allocated to either a high or low DHA (16 vs. 20 kg of DM/d per cow; >40 mm) in a 2 × 2 factorial design. Pregrazing HM did not affect dry matter intake (17.5 ± 0.75 kg/d), milk production (22.1 ± 0.99 kg/d), milk composition (milk fat, 3.88 ± 0.114%; milk protein, 3.28 ± 0.051%), body weight (525 ± 16 kg), or body condition score (2.65 ± 0.064). Increasing DHA increased dry matter intake (+1.5 kg/d) but did not affect any other variable measured. Cows grazing the low HM or high DHA had a higher daily intake of total FA (+0.12 and +0.09 kg/d, respectively, for the low HM and high DHA), α-linolenic acid (LNA; +0.08 and +0.05 kg/d, respectively, for the low HM and high DHA), and linoleic acid (+0.01 for both the low HM and high DHA) compared with either the high HM or low DHA. Milk conjugated linoleic acid (cis-9, trans-11 isomer) was not affected by treatment (13.0 ± 0.77 g/kg of total FA); however, large variation was recorded between individual animals (range from 5.9 to 20.6 g/kg of total FA). Milk concentrations of LNA were higher for animals offered the low HM (5.3 g/kg of total FA), but across treatments, milk concentrations of LNA were low (4.9 ± 0.33 g/kg of total FA). The present study indicates that changes in HM and DHA do not have a great effect on the milk FA composition of grazing dairy cows. Further enhancement of the beneficial FA content in milk purely from changes in grazing strategy may be difficult when pasture quality is already high.  相似文献   

3.
The effects of varying amounts of linseed oil (LSO) in grazing dairy cows’ diet on milk conjugated linoleic acid (cis-9, trans-11 CLA) were investigated in this study. Twelve Holstein cows in midlactation (150 ± 19 DIM) were placed on alfalfa-based pasture and assigned to 4 treatments using a 4 × 4 Latin square design with 3-wk periods. Treatments were: 1) control grain supplement; 2) control grain supplement containing 170 g of LSO (LSO1); 3) control grain supplement containing 340 g of LSO (LSO2); and 4) control grain supplement containing 510 g of LSO (LSO3). Grain supplements were offered at 7 kg/d. Additional 100 g/d of algae, divided evenly between the 2 feeding times, were added to every treatment diet. Milk samples were collected during the last 3 d of each period and analyzed for chemical and fatty acid composition. Treatments had no effect on milk production (18.9, 18.5, 19.6, and 19.1 kg/d for treatments 1 to 4, respectively). Linseed oil supplementation caused a quadratic increase in milk fat (3.23, 3.44, 3.35, and 3.27% for treatments 1 to 4, respectively) and protein (3.03, 3.19, 3.12, and 3.08%) contents. Concentrations (g/100 g of fatty acids) of milk cis-9, trans-11 CLA (1.12, 1.18, 1.39, and 1.65 for treatments 1 to 4, respectively) and VA (3.39, 3.62, 4.25, and 4.89) linearly increased with LSO supplementations. Results from this trial suggest that the increase in milk cis-9, trans-11 CLA was proportional to the amounts of LSO fed. In conclusion, adding LSO to grazing dairy cow diets can improve the nutritional value of milk without compromising milk composition or cow performance.  相似文献   

4.
The objective of this study was to estimate genetic parameters for conjugated linoleic acid (CLA) and other selected milk fatty acid (FA) content and for unsaturation ratios in the Italian Holstein Friesian population. Furthermore, the relationship of milk FA with milk fat and protein content was considered. One morning milk sample was collected from 990 Italian Holstein Friesian cows randomly sampled from 54 half-sib families, located in 34 commercial herds in the North-eastern part of Italy. Each sample was analyzed for milk percentages of fat and protein, and for single FA percentages (computed as FA weight as a proportion of total fat weight). Heritabilities were moderate for unsaturated FA, ranging from 0.14 for C16:1 to 0.19 for C14:1. Less than 10% of heritability was estimated for each saturated FA content. Heritability for index of desaturation, monounsaturated FA and CLA/trans-11 18:1 ratio were 0.15, 0.14, and 0.15, respectively. Standard errors of the heritability values ranged from 0.02 to 0.06. Genetic correlations were high and negative between C16:0 and C18:0, as well as between C14:0 and C18:0. Genetic correlations of index of desaturation were high and negative with C14:0 and C16:0 (−0.70 and −0.72, respectively), and close to zero (0.03) with C18:0. The genetic correlation of C16:0 with fat percentage was positive (0.74), implying that selection for fat percentage should result in a correlated increase of C16:0, whereas trans-11 C18:1 and cis-9, trans-11 C18:2 contents decreased with increasing fat percentage (−0.69 and −0.55, respectively). Genetic correlations of fat percentage with 14:1/14 and 16:1/16 ratios were positive, whereas genetic correlations of fat percentage with 18:1/18 and CLA/trans-11 18:1 ratios were negative. These results suggest that it is possible to change the milk FA composition by genetic selection, which offers opportunities to meet consumer demands regarding health aspects of milk and dairy products.  相似文献   

5.
This work was conducted to investigate the effect of supplementing grazing ewes on pasture with a cereal concentrate on the milk fatty acid (FA) profile. Ninety Assaf ewes in mid lactation were distributed in 9 lots of 10 animals each and allocated to 3 feeding regimens: 1) pasture—ewes were only allowed to graze pasture (an irrigated sward of Lolium perenne, Trifolium pratense, and Dactylis glomerata); 2) PS—grazing ewes were supplemented with oat grain (700 g/animal and day); and 3) TMR—ewes were fed ad libitum a total mixed ration (TMR; 80:20 concentrate/forage ratio). Milk yield and composition were recorded for 5 wk. The highest milk yield was observed in ewes receiving the TMR and the lowest in grazing ewes supplemented with oat grain. Productions of milk fat, protein, and total solids showed the lowest values in treatment PS. The atherogenicity index, which comprises C12:0, C14:0, and C16:0, in PS milk fat was no different from that observed in milk from animals on pasture (1.53 for pasture, 1.54 for PS, and 3.22 for TMR). Oat grain supplementation generated higher amounts of C18:0 and cis-9 C18:1 in milk fat than the pasture-only diet, but significantly decreased the levels of α-linolenic acid and most of intermediates of the process of biohydrogenation of this FA. Cis-9 trans-11 C18:2 and trans-11 C18:1, its precursor for endogenous synthesis in the mammary gland, were lower in PS (0.58 and 1.59 g/100 g of total FA) than in TMR (0.72 and 1.92 g/100 g of total FA) and very different from the results observed in grazing ewes receiving no supplement (1.21 and 3.88 g/100 g of total FA). Furthermore, the lowest levels of trans-10 C18:1 and trans-10 cis-12 C18:2 were detected in the milk fat of ewes fed pasture. It is concluded that, when pasture quality and availability do not limit dairy production, supplementation of grazing ewes with oat grain compromised the milk FA profile without any significant positive effect on milk production.  相似文献   

6.
Control (CL) and select line (SL) dairy cows (n = 22) managed identically but differing in milk yield (>4100 kg/305 d) were used to determine differences in milk fatty acid profile as lactation progressed. Milk yield was recorded daily and milk samples were collected during wk 1, 4, 8, 12, and 16 postpartum for milk composition analysis. Milk samples from wk 1, 8, and 16 were also analyzed for fatty acid composition. Select-line cows produced more milk (44.4 vs. 31.2 kg/d) and milk components than CL cows during the 16-wk period. There was no difference in rate of milk yield increase, but peak milk yield for SL cows was greater and occurred later in lactation. There were no differences in milk SCC or milk fat, protein, or lactose content. Selection for milk yield did not affect the content of most individual milk fatty acids; however, compared with CL, SL cows had a reduced Delta(9)-desaturase system and tended to produce milk with lower monounsaturated fatty acid content. Selection for milk yield did not affect milk fatty acid origin but the percentage of de novo fatty acids increased and preformed fatty acids decreased as lactation progressed. Milk fat trans-11 18:1 and cis-9,trans-11 conjugated linoleic acid increased with progressing lactation (10.7 vs. 14.1 and 3.1 vs. 5.4 mg/g, or 31 and 76%, respectively) and were correlated strongly among wk 1, 8, and 16 of lactation. Temporal changes in the Delta(9)-desaturase system occurred during lactation but these changes were not correlated with milk fat cis-9,trans-11 conjugated linoleic acid content. Results indicate prolonged genetic selection for milk yield had little effect on milk fatty acid composition, but milk fatty acid profiles varied markedly by week of lactation.  相似文献   

7.
Milk fatty acid composition is a parameter of great interest for evaluation of nutritional quality of milk. Stearoyl-CoA desaturase (SCD) is a key enzyme in mammary lipid metabolism because it is able to add a double bond in the cis Δ9-position in a large spectrum of medium- and long-chain fatty acids. A polymorphism with 2 alleles (A and V) in the fifth exon of the SCD gene has been reported. The effect of SCD genotype on individual milk fatty acid composition and on cis-9 unsaturated/saturated fatty acid ratios of 297 Holstein Italian Friesian cows was investigated in this paper. The SCD genotypes were determined by using a single strand conformation polymorphism method. Relative frequencies of SCD genotypes were 27, 60, and 13% for AA, AV, and VV, respectively. Milk of AA cows had a greater content of cis-9 C18:1 and total monounsaturated fatty acids and a higher C14:1/C14 ratio than did milk of VV cows. The relative contribution of SCD genotype to variation of monounsaturated fatty acids, cis-9 C18:1, and cis-9 C14:1 was 5, 4, and 7.7%, respectively. No significant differences were detected between SCD genotypes in the milk content of cis-9, trans-11 C18:2. Results of the present work provide some indication of an association between SCD locus and the fatty acid profile in the examined sample of Italian Holsteins, thus suggesting a possible role of this gene in the genetic variation of milk nutritional properties.  相似文献   

8.
Forty Holstein dairy cows were used to determine the effectiveness of linoleic or linolenic-rich oils to enhance C18:2cis-9, trans-11 conjugated linoleic acid (CLA) and C18:1trans-11 (vaccenic acid; VA) in milk. The experimental design was a complete randomized design for 9 wk with measurements made during the last 6 wk. Cows were fed a basal diet containing 59% forage (control) or a basal diet supplemented with either 4% soybean oil (SO), 4% flaxseed oil (FO), or 2% soybean oil plus 2% flaxseed oil (SFO) on a dry matter basis. Total fatty acids in the diet were 3.27, 7.47, 7.61, and 7.50 g/100 g in control, SO, FO, and SFO diets, respectively. Feed intake, energy-corrected milk (ECM) yield, and ECM produced/kg of feed intake were similar among treatments. The proportions of VA were increased by 318, 105, and 206% in milk fat from cows in the SO, FO, and SFO groups compared with cows in the control group. Similar increases in C18:2cis-9, trans-11 CLA were 273, 150, and 183% in SO, FO, and SFO treatments, respectively. Under similar feeding conditions, oils rich in linoleic acid (soybean oil) were more effective in enhancing VA and C18:2cis-9, trans-11 CLA in milk fat than oils containing linolenic acid (flaxseed oil) in dairy cows fed high-forage diets (59% forage). The effects of mixing linoleic and linolenic acids (50:50) on enhancing VA and C18:2cis-9, trans-11 CLA were additive, but not greater than when fed separately. Increasing the proportion of healthy fatty acids (VA and CLA) by feeding soybean or flaxseed oil would result in milk with higher nutritive and therapeutic value.  相似文献   

9.
Bovine milk contains high proportions of saturated fatty acids (SFA) because of the extensive biohydrogenation of dietary fatty acids in the rumen. Stearoyl-coenzyme A desaturase 1 (SCD1) catalyzes the conversion of C10 to C18 SFA into their monounsaturated (MUFA) counterparts in the mammary glands of ruminant animals; and 2 alleles (A and V) have previously been identified at the SCD1 locus. Genotypes at this locus were identified and fatty acid contents of milk were measured for 525 Canadian Jersey cows. Association analysis indicated that allele A is positively associated with higher C10 (C10I), C12 (C12I) and C14 (C14I) indices and, consequently, with greater contents of C10:1 and C12:1, but not C14:1, relative to allele V. Allele A was also positively associated with increased 305-d milk and protein yields. Allele A, however, had no influence on C16 (C16I), C18 (C18I), or conjugated linoleic acid indices (CLAI) compared with the V allele. Stage of lactation had an influence on desaturase indices and consequently on the MUFA contents of milk fat. The indices C10I, C12I, C14I, and CLAI increased from early to mid lactation as did their respective MUFA. Genetic selection for increased unsaturation of the hypercholesterolemic fatty acids in milk fat is feasible and may be accompanied by increased lactation milk and protein yields.  相似文献   

10.
The objective of this study was to determine the long-term effect on milk conjugated linoleic acid (cis-9, trans-11 CLA) of adding fish oil (FO) and sunflower oil (SFO) to the diets of partially grazing dairy cows. Fourteen Holstein cows were divided into 2 groups (7 cows/treatment) and fed either a control or oil-supplemented diet for 8 wk while partially grazing pasture. Cows in group 1 were fed a grain mix diet (8.0 kg/d, DM basis) containing 400 g of saturated animal fat (control). Cows in the second group were fed the same grain mix diet except the saturated animal fat was replaced with 100 g of FO and 300 g of SFO. Cows were milked twice a day and milk samples were collected weekly throughout the trial. Both groups grazed together on alfalfa-based pasture ad libitum and were fed their treatment diets after the morning and afternoon milking. Milk production (30.0 and 31.2 kg/d), milk fat percentages (3.64 and 3.50), milk fat yield (1.08 and 1.09 kg/d), milk protein percentages (2.97 and 2.88), and milk protein yield (0.99 and 0.91 kg/d) for diets 1 and 2, respectively, were not affected by the treatment diets. The concentrations of cis-9, trans-11 CLA (1.64 vs. 0.84 g/100 g of fatty acids) and vaccenic acid (5.11 vs. 2.20 g/100 g of fatty acids) in milk fat were higher for cows fed the oil-supplemented diet over the 8 wk of oil supplementation. The concentration of cis-9, trans-11 CLA in milk fat reached a maximum (1.0 and 1.64 g/100 g of fatty acids for diets 1 and 2, respectively) in wk 1 for both diets and remained relatively constant thereafter. The concentration of vaccenic acid in milk fat followed the same temporal pattern as cis-9, trans-11 CLA. In conclusion, supplementing the diet of partially grazing cows with FO and SFO increased the milk cis-9, trans-11 CLA content, and that increase remained relatively constant after 1 wk of oil supplementation.  相似文献   

11.
Comparing the fatty acid composition of organic and conventional milk   总被引:2,自引:0,他引:2  
During a 12-mo longitudinal study, bulk-tank milk was collected each month from organic (n = 17) and conventional (n = 19) dairy farms in the United Kingdom. All milk samples were analyzed for fatty acid (FA) content, with the farming system type, herd production level, and nutritional factors affecting the FA composition investigated by use of mixed model analyses. Models were constructed for saturated fatty acids, the ratio of polyunsaturated fatty acids (PUFA) to monounsaturated fatty acids, total n-3 FA, total n-6 FA, conjugated linoleic acid, and vaccenic acid. The ratio of n-6:n-3 FA in both organic and conventional milk was also compared. Organic milk had a higher proportion of PUFA to monounsaturated fatty acids and of n-3 FA than conventional milk, and contained a consistently lower n-6:n-3 FA ratio (which is considered beneficial) compared with conventional milk. There was no difference between organic and conventional milk with respect to the proportion of conjugated linoleic acid or vaccenic acid. A number of factors other than farming system were identified which affected milk FA content including month of year, herd average milk yield, breed type, use of a total mixed ration, and access to fresh grazing. Thus, organic dairy farms in the United Kingdom produce milk with a higher PUFA content, particularly n-3 FA, throughout the year. However, knowledge of the effects of season, access to fresh grazing, or use of specific silage types could be used by producers to enhance the content of beneficial FA in milk.  相似文献   

12.
Based on the potential benefits of cis-9, trans-11 conjugated linoleic acid (CLA) for human health, there is a need to develop effective strategies for enhancing milk fat CLA concentrations. Levels of cis-9, trans-11 CLA in milk can be increased by supplements of fish oil (FO) and sunflower oil (SO), but there is considerable variation in the response. Part of this variance may reflect time-dependent ruminal adaptations to high levels of lipid in the diet, which lead to alterations in the formation of specific biohydrogenation intermediates. To test this hypothesis, 16 late lactation Holstein-British Friesian cows were used in a repeated measures randomized block design to examine milk fatty acid composition responses to FO and SO in the diet over a 28-d period. Cows were allocated at random to corn silage-based rations (8 per treatment) containing 0 (control) or 45 g of oil supplement/kg of dry matter consisting (1:2; wt/wt) of FO and SO (FSO), and milk composition was determined on alternate days from d 1. Compared with the control, the FSO diet decreased mean dry matter intake (21.1 vs. 17.9 kg/d), milk fat (47.7 vs. 32.6 g/kg), and protein content (36.1 vs. 33.3 g/kg), but had no effect on milk yield (27.1 vs. 26.4 kg/d). Reductions in milk fat content relative to the FSO diet were associated with increases in milk trans-10 18:1, trans-10, cis-12 CLA, and trans-9, cis-11 CLA concentrations (r2 = 0.74, 0.57, and 0.80, respectively). Compared with the control, the FSO diet reduced milk 4:0 to 18:0 and cis 18:1 content and increased trans 18:1, trans 18:2, cis-9, trans-11 CLA, 20:5 n-3, and 22:6 n-3 concentrations. The FSO diet caused a rapid elevation in milk cis-9, trans-11 CLA content, reaching a maximum of 5.37 g/100 g of fatty acids on d 5, but these increases were transient, declining to 2.35 g/100 g of fatty acids by d 15. They remained relatively constant thereafter. Even though concentrations of trans-11 18:1 followed the same pattern of temporal changes as cis-9, trans-11 CLA, the total trans 18:1 content of FSO milk was unchanged because of the concomitant increases in the concentration of other isomers (Δ4-10 and Δ12-15), predominantely trans-10 18:1. In conclusion, supplementing diets with FSO enhances milk fat cis-9, trans-11 CLA content, but the high level of enrichment declines because of changes in ruminal biohydrogenation that result in trans-10 replacing trans-11 as the major 18:1 biohydrogenation intermediate formed in the rumen.  相似文献   

13.
The objective of this trial was to study the interaction between the supplementation of lipid-encapsulated conjugated linoleic acid (CLA; 4.5 g of cis-9,trans-11 C18:2 and 4.5 g of trans-10,cis-12 C18:2) and feeding level to test if milk performance or milk fatty acid (FA) profile are affected by the interaction between CLA and feeding level. Twenty-four dairy goats were used in an 8-wk trial with a 3-wk adaptation to the experimental ration that contained corn silage, beet pulp, barley, and a commercial concentrate. During the third week, goats were assigned into blocks of 2 goats according to their dry matter intake (DMI), raw milk yield, and fat yield. Each block was randomly allocated to control (45 g of Ca salt of palm oil/d) or CLA treatment. Within each block, one goat was fed to cover 100% (FL100) of the calculated energy requirements and the other was fed 85% of the DMI of the first goat (FL85). Individual milk production and composition were recorded weekly, and milk FA composition was analyzed in wk 3, 5, and 7. Conjugated linoleic acid supplementation reduced milk fat content and fat yield by 17 and 19%, respectively, independent of the feeding level. It reduced both the secretion of milk FA synthesized de novo, and those taken up from the blood. No interaction between CLA and feeding level was observed on milk secretion of any group of FA. The CLA supplementation had no effect on DMI, milk yield, protein, and lactose yields but it improved calculated net energy for lactation balance. Goats fed the FL100 × CLA diet tended to have the highest DMI and protein yield. The interaction between CLA and feeding level was not significant for any other variables. Compared with the goats fed FL100, those fed FL85 had lower DMI, lower net energy for lactation balance, and lower digestible protein in the intestine balance. The body weight; milk yield; milk fat, protein, and lactose yields; and fat, protein, lactose, and urea contents in milk were not affected by feeding level. In conclusion, reduction in energy spared via fat yield reduction after CLA supplementation was not partitioned toward milk lactose or protein in goats at a low feeding level, possibly because of a simultaneous shortage of energy and amino acids. In goats on the high feeding level, energy spared tended to be partitioned toward milk protein yield, and at the same time to the prevention of excessive lipid mobilization.  相似文献   

14.
The aim of this study was to investigate the effects of conjugated linoleic acid supplementation on the synthesis of milk fat in pasture-fed Friesian cows. In four cows, a commercial mixture containing 62.3% (wt/vol) conjugated linoleic acid was infused intraabomasally to avoid rumen fermentation and biohydrogenation. The design was a 4 x 4 Latin square in which each cow received infusions of 0, 20, 40, and 80 g/d of conjugated linoleic acid mixture for 4 d. Cows were fed freshly cut ryegrass/white clover pasture ad libitum. Milk fat concentration was decreased by 36, 43, and 62% and milk fat yield was decreased by 32, 36, and 60% by the 20, 40, and 80 g of conjugated linoleic acid/d treatments. Dry matter intake, milk protein concentration, and protein yield were unaffected by treatments; however, milk yield was increased by 11% during the 40-g conjugated linoleic acid/d treatment. The effects of conjugated linoleic acid infusion were most pronounced in reducing de novo fatty acid synthesis and desaturation. Results show that the inhibitory effect of this conjugated linoleic acid mixture on milk fat synthesis occurs in pasture-fed cows, and demonstrate the potential to dramatically alter gross milk composition. This technology could offer a management tool to manipulate milk composition and energy demands of pasture-fed cows.  相似文献   

15.
Two experiments were conducted to study the consumer acceptability attributes of conjugated linoleic acid (CLA)-enriched milk and cheese from cows grazing on pasture. In experiment 1, 15 cows were fed either a diet containing 51% alfalfa hay plus corn silage and 49% concentrate [total mixed ration (TMR)], were grazed on pasture, or were grazed on pasture and received 3.2 kg/d of a grain mix. The grain mix contained 75% full-fat extruded soybeans (FFES), 10% corn, 10% beet pulp, and 5% molasses. During the final 3 wk of the 6-wk experiment, milk was evaluated for sensory attributes. In experiment 2, 18 cows were fed similar diets as in experiment 1, except replacing the group of cows grazed on pasture and receiving the grain mix was a group of cows grazed on pasture and receiving 2.5 kg/d per cow of the FFES; Cheddar cheese was manufactured from milk. Average CLA contents (g/100 g of fatty acid methyl esters) were 0.52, 1.63, and 1.69 in milk and 0.47, 1.47, and 1.46 in cheese from cows fed a TMR, grazed on pasture, and grazed on pasture and fed the grain mix, respectively. An open and trained panel evaluated CLA-enriched milk for mouth-feel, color, flavor, and quality and evaluated cheese for color, flavor, texture, and quality. Open and trained panel evaluations of milk and cheese showed no differences among treatments for any of the attributes, except that the trained panel detected a more barny flavor in milk from cows grazing pasture compared with milk from cows fed the TMR only. Results suggest that consumer acceptability attributes of CLA-enriched milk and cheese from cows grazing pasture is similar to those of milk and cheese with low levels of CLA.  相似文献   

16.
During biohydrogenation-induced milk fat depression (MFD), nutrients are spared from milk fat synthesis and are available for other metabolic uses. Acetate is the major carbon source spared and it may increase lipid synthesis in adipose tissue during MFD. The objective of this study was to compare the effect of trans-10,cis-12 conjugated linoleic acid (CLA) and the amount of acetate spared during CLA-induced MFD on adipose tissue lipogenesis. Nine multiparous, lactating, ruminally cannulated Holstein cows (244 ± 107 d in milk; 25 ± 8.4 kg of milk/d; mean ± standard deviation) were randomly assigned to treatments in a 3 × 3 Latin square design. Experimental periods were 4 d followed by a 10-d washout. Treatments were control (CON), ruminal infusion of acetate (AC; continuous infusion of 7 mol/d adjusted to pH 6.1 with sodium hydroxide), or abomasal infusion of CLA (10 g/d of both trans-10,cis-12 CLA and cis-9,trans-11 CLA). Dry matter intake, milk yield, and milk protein yield and percentage were not affected by treatments. Compared with CON, milk fat yield decreased 23% and fat percent decreased 28% in CLA, and milk fat yield increased 20% in AC. Concentration and yield of milk de novo synthesized fatty acids (<C16) were reduced and concentration of preformed fatty acids (>C16) was increased by CLA, compared with CON. Yield of de novo synthesized fatty acids and palmitic acid was increased by AC, compared with CON. Lipogenesis capacity of adipose tissue explants was decreased 72% by CLA, but was not affected by AC. Acetate oxidation by adipose explants was not affected by treatments. Treatments had no effect on expression of key lipogenic factors, lipogenic enzymes, and leptin; however, expression of fatty acid binding protein 4 was reduced in CLA compared with CON. Additionally, hormone-sensitive lipase and perilipin 1 were decreased by CLA and acetate. Plasma glucose and glucagon concentrations were not affected by treatments; however, CLA increased nonesterified fatty acids 17.7%, β-hydroxybutyrate 16.1%, and insulin 27.8% compared with CON, and AC increased plasma β-hydroxybutyrate 18%. In conclusion, during CLA-induced MFD in low-producing cow adipose tissue was sensitive to the anti-lipogenic effects of CLA, while spared acetate did not stimulate adipose lipogenesis. However, acetate may play an important role in stimulating lipogenesis and improving energy status in the mammary gland under normal conditions.  相似文献   

17.
Two experiments were conducted to evaluate the effects of nature of forage on fatty acid composition and lipolytic system in cow milk to increase the nutritional quality of dairy products. Each experiment was divided into a 4-wk preexperimental and 6- or 8-wk experimental period. During the 2 preexperimental periods, 56 midlactating Montbéliarde or Tarentaise cows received a diet based on corn silage. Subsequently, in Experiment 1,40 cowswere allocatedinto 5groups (4Montbéliarde and 4 Tarentaise cows per group) and assigned to dietary treatments: corn silage (87% of dry matter intake), grass silage (86%), ryegrass hay (90%), mountain natural grassland hay (87%), or a diet rich in concentrate (CONC, 65/35% concentrate/hay). In Experiment 2, 16 cows divided into 2 groups were fed during 3 or 6 wk mountain natural pasture (100%) or mountain natural grassland hay (87%). Principal component analysis was applied to describe the relationships among dairy performances, milk fatty acids (FA), and lipolytic system. The milk 18:0, cis-9-18:1, trans-11-18:1, and cis-9, trans-11-18:2 percentages were closely associated with 3-wk mountain natural pasture diet, whereas short- and medium-chain (mostly saturated) FA were associated with the CONC diet. Tarentaise milk fat contained a lower proportion (−3 to 4 g/100 g) of 16:0 and higher proportions of stearic acid and fewer markedly polyunsaturated FA than Montbéliarde milk fat. Milk lipolysis was lowest for CONC and corn silage groups. Milk from Tarentaise cows presented lower initial free FA and postmilking lipolysis. Diets given to cows, especially young grass, modified the milk content of FA with a putative nutritional effect on human health.  相似文献   

18.
Camelina is an ancient oilseed crop that produces an oil rich in cis-9,cis-12 18:2 (linoleic acid, LA) and cis-9,cis-12,cis-15 18:3 (α-linolenic acid, ALA); however, reports on the use of camelina oil (CO) for ruminants are limited. The present study investigated the effects of incremental CO supplementation on animal performance, milk fatty acid (FA) composition, and milk sensory quality. Eight Finnish Ayrshire cows (91 d in milk) were used in replicated 4 × 4 Latin squares with 21-d periods. Treatments comprised 4 concentrates (12 kg/d on an air-dry basis) based on cereals and camelina expeller containing 0 (control), 2, 4, or 6% CO on an air-dry basis. Cows were offered a mixture of grass and red clover silage (RCS; 1:1 on a dry matter basis) ad libitum. Incremental CO supplementation linearly decreased silage and total dry matter intake, and linearly increased LA, ALA, and total FA intake. Treatments had no effect on whole-tract apparent organic matter or fiber digestibility and did not have a major influence on rumen fermentation. Supplements of CO quadratically decreased daily milk and lactose yields and linearly decreased milk protein yield and milk taste panel score from 4.2 to 3.6 [on a scale of 1 (poor) to 5 (excellent)], without altering milk fat yield. Inclusion of CO linearly decreased the proportions of saturated FA synthesized de novo (4:0 to 16:0), without altering milk fat 18:0, cis-9 18:1, LA, and ALA concentrations. Milk fat 18:0 was low (<5 g/100 g of FA) across all treatments. Increases in CO linearly decreased the proportions of total saturates from 58 to 45 g/100 g of FA and linearly enriched trans-11 18:1, cis-9,trans-11 18:2, and trans-11,cis-15 18:2 from 5.2, 2.6, and 1.7 to 11, 4.3, and 5.8 g/100 g of FA, respectively. Furthermore, CO quadratically decreased milk fat trans-10 18:1 and linearly decreased trans-10,cis-12 18:2 concentration. Overall, milk FA composition on all treatments suggested that one or more components in camelina seeds may inhibit the complete reduction of 18-carbon unsaturates in the rumen. In conclusion, CO decreased the secretion of saturated FA in milk and increased those of the trans-11 biohydrogenation pathway or their desaturation products. Despite increasing the intake of 18-carbon unsaturated FA, CO had no effect on the secretions of 18:0, cis-9 18:1, LA, or ALA in milk. Concentrates containing camelina expeller and 2% CO could be used for the commercial production of low-saturated milk from grass- and RCS-based diets without major adverse effects on animal performance.  相似文献   

19.
The objective of this work was to evaluate the effect of the supplementation of conjugated linoleic acid (CLA; 4.5 g of cis-9,trans-11 C18:2 and 4.5 g of trans-10,cis-12 C18:2) on milk performance, milk fatty acid (FA) composition, and adipose tissue reactivity in dairy goats fed a high-concentrate diet based on corn silage. Twenty-four multiparous dairy goats in early to mid lactation were used in a 10-wk trial, with a 3-wk adaptation to the experimental total mixed ration that contained corn silage (35%, dry matter basis), beet pulp (20%), barley (15%), and a commercial concentrate (30%). Goats were randomly allocated to 2 experimental groups and they were fed 45 g/d of a lipid supplement (either CLA or Ca salts of palm oil added on top of the total mixed ration). Individual milk production and composition were recorded weekly, and milk FA composition was analyzed in wk 2, 5, and 6. In the last week of the trial, an isoproterenol challenge was performed for 12 goats before morning feeding. The CLA supplementation had no effect on dry matter intake (DMI), body weight (BW), milk yield, milk protein content, and lactose yield and content, but it significantly decreased milk fat yield and content by 18 and 15%, respectively. The decrease in milk fat yield was related to a lower secretion of FA synthesized de novo, of the medium-chain FA, and to a lesser extent of the long-chain FA that are taken up from the peripheral circulation. The CLA supplementation decreased the proportion of the sum of C16:0 and C16:1 and the sum of total cis C18:1, and it increased the proportions of the sum of long-chain (C >16) and the sum of iso FA without modification of the total trans C18:1 and the sum of FA synthesized de novo (C <16). During the first 25 min relative to isoproterenol injection, the maximal concentrations, the increases above basal concentration, the changes in area under the curve, and the total area under the curve for glucose and nonesterified FA were not affected by CLA treatment. In conclusion, CLA supplementation associated with a high-concentrate diet based on corn silage resulted in decreased milk fat yield, increased net energy balance, and it did not affect the sensitivity of the adipose tissue to lipolytic challenge in lactating goats.  相似文献   

20.
The effects of ruminant diet supplementation with linoleic or different polyunsaturated fatty acids (FA) have been well documented. Less abundant information, however, exists on the effects of incorporating monounsaturated FA, such as oleic acid, on lipid metabolism or animal performance. The purpose of this work was to assess the effects of feeding dairy ewes a diet supplemented with high levels of olive oil (OO) on milk yield and composition, paying particular attention to the FA profile. Twenty-four Assaf ewes were fed ad libitum with 2 diets, control or supplemented with 6% OO (2 lots of 6 animals per diet) for 4 wk. Milk yield and composition and dry matter intake were recorded weekly. Milk FA composition was determined by gas chromatography and conjugated linoleic acid profile by silver ion HPLC. Milk yield increased in ewes receiving OO, with no differences in dry matter intake. The OO diet decreased the milk protein percentage but increased the milk fat, protein, and total solids yield. Medium-chain saturated FA (C10:0 to C16:0) content was reduced with OO supplementation, whereas C18:0 and cis-9 C18:1 content increased. Leaving aside trans-11, most trans C18:1 isomers, mainly trans-10, increased in supplemented ewes. The main conjugated linoleic acid isomer (cis-9, trans-11 C18:2) decreased with OO supplementation, whereas trans-7, cis-9 and trans-9, cis-11 C18:2 exhibited a remarkable increase. These results support the argument that the supplementation of ewe diets with high levels of OO does not have any detrimental effects on animal performance but substantially modifies the FA profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号