首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to investigate the effect of 2 breeds, Holstein and Jersey, and their F1 hybrid (Jersey × Holstein) on milk fatty acid (FA) concentrations under grazing conditions, especially conjugated linoleic acid (CLA) and n-3 polyunsaturated fatty acids because of their importance to human health. Eighty-one cows (27 per breed grouping) were allocated a predominantly perennial ryegrass pasture. Samples were collected over 2 periods (June and July). Breed affected dry matter intake and milk production and composition. Holstein cows had the highest dry matter intake (18.4 ± 0.40 kg of DM/d) and milk production (21.1 ± 0.53 kg of DM/d). Holstein and Jersey × Holstein cows had similar 4% fat corrected milk, fat yield, and protein yield; with the exception of fat yield, these were all higher than for Jersey cows. Milk fat concentration was highest for Jersey cows and lowest for Holstein cows, with the hybrid cows intermediate. Total FA and linolenic acid intake (1.09 ± 0.023 and 0.58 ± 0.012 kg/d, respectively) were highest for Holstein cows. In terms of milk FA, Holstein cows had higher contents of C14:1, cis-9 C18:1 and linoleic acid. In turn, Jersey and Jersey × Holstein cows had higher content of C16:0. Milk concentrations of neither the cis-9,trans-11 isomer of CLA nor its precursor, vaccenic acid, were affected by breed. Nevertheless, large variation between individual animals within breed grouping was observed for CLA and estimated Δ9-desaturase activity. There was some evidence for a negative heterotic effect on milk concentration of CLA, with the F1 hybrid cows having lower concentrations compared with the mid parent average. Plasma FA profile did not accurately reflect differences in milk FA composition. In conclusion, there was little evidence for either breed or beneficial heterotic effects on milk FA content with human health-promoting potential, though significant within-breed, interanimal variation was observed.  相似文献   

2.
The objectives of this study were to investigate differences in grazing behavior among Holstein-Friesian (HF), Jersey (JE), and Jersey × Holstein-Friesian (F1) cows under an intensive, seasonal, grass-based environment and to determine whether associations exist among grazing behavior, intake capacity, and production efficiency. Data from a total of 108 animals (37 HF, 34 JE, and 37 F1) were available for analysis. Measurements included milk production, body weight (BW), intake, and grazing behavior. Breed group had a significant effect on all of the production, grass dry matter intake, and efficiency parameters investigated. No differences were observed among the breeds for grazing time, number of grazing bouts, grazing bout duration, and total number of bites. Grazing mastications were higher for the JE cows compared with the HF cows. Grass dry matter intake per bite and rate of intake per minute were higher for the HF cows compared with the JE cows. Large differences between the breeds were apparent when grazing behavior measurements were expressed per unit of BW and per unit of intake. In absolute terms, the HF cows spent more time ruminating and had more mastications during rumination than the JE cows. However, when expressed per unit of BW, ruminating time was greater for the JE cows and they tended to have more ruminating mastications compared with the HF cows. Despite these differences, ruminating time and ruminating mastications per unit of intake were similar for the 2 breeds. For the most part, the F1 cows tended to be similar to the mid-parent mean, but results showed an increase in biting rate, lower grazing duration per bout, and a tendency to achieve a high intake per bite compared with the average of the parent breeds. The results obtained also indicate that inherent grazing and ruminating differences exist between cows varying in intake capacity and production efficiency. Cows with higher intake capacities have increased grazing time and rate of intake per unit of BW. Increased production efficiency, on the other hand, appears to be aided, in particular by improvements in mastication behavior during grazing.  相似文献   

3.
《Journal of dairy science》2022,105(4):3544-3558
Milk production may be reduced before dry-off to decrease the risk of cows developing intramammary infections during the dry period. Such reductions in milk may be possible in automated milking systems (AMS) where milking frequency and feed allocation at the AMS can be controlled at the cow level. This study investigated the effect of dry-off management of cows milked in AMS on milk yield, milking behavior, and somatic cell count (SCC). Using a 2 × 2 factorial arrangement of treatments, applied from d 14 to 1 before dry-off, 445 cows from 5 commercial dairy farms in Quebec, Canada, were assigned within farm to either (1) reduced feed [RF; allowed a maximum of 0.75 kg/d of AMS pellet for the first week (14 to 8 d before dry-off) of treatment, and 0.50 kg/d for the second week (7 to 1 d before dry-off) of treatment], or (2) nonreduced feed (NF; allowed up to 2 kg/d of AMS pellet), and either (1) reduced milking (RM; reduced to 2 milkings/d or as many times as required to yield 17 kg/milking), or (2) nonreduced milking (NM; allowed up to 6 AMS milkings/d) and no maximum production. Feed and milking behavior data, as well as milk yield and SCC were collected from the AMS software. The RF cows had lower AMS feed delivered during the treatment period, as per the experimental design. Across the treatment period, the NF-NM cows had the highest milking frequency (2.7 times/d), followed by the RF-NM cows (2.4 times/d), and then both of the RM groups (1.8 times/d), which did not differ from each other. All cows, except the NF-NM cows, were gradually milked less frequently as dry-off approached. Across the entire 2-wk treatment period before dry-off, cows with RM allowance experienced a higher reduction in milk yield compared with the cows with no milking allowance restrictions (?4.8 vs. ?3.6 kg). Similarly, cows with a RF allocation tended to have a higher reduction in milk yield than cows with NF (?4.6 vs. ?3.7 kg). As result, those cows with both reduced milking permissions and feed allocation at the AMS experienced the greatest drop in milk production before dry-off. There were no differences between treatments for milking frequency or yield in the next lactation. Somatic cell score (calculated from SCC) was not different between treatments in the 2-wk or day before dry-off, nor in the first month after calving. Overall, these data suggest that reducing both milking frequency and feed quantity in the AMS is the most efficient method to decrease milk yield before dry-off, without negatively influencing milking frequency or yield in the next lactation, as well as without affecting milk quality.  相似文献   

4.
In this study the genetic association during lactation of 2 clinical mastitis (CM) traits: CM1 (7 d before to 30 d after calving) and CM2 (31 to 300 d after calving) with test-day somatic cell score (SCS) and milk yield (MY) was assessed using multitrait random regression sire models. The data analyzed were from 27,557 first-lactation Finnish Ayrshire cows. Random regressions on second- and third-order Legendre polynomials were used to model the daily genetic and permanent environmental variances of test-day SCS and MY, respectively, while only the intercept term was fitted for CM. Results showed that genetic correlations between CM and the test-day traits varied during lactation. Genetic correlations between CM1 and CM2 and test-day SCS during lactation varied from 0.41 to 0.77 and from 0.34 to 0.71, respectively. Genetic correlations of test-day MY with CM1 and CM2 ranged from 0.13 to 0.51 and from 0.49 to 0.66, respectively. Correlations between CM1 and SCS were strongest during early lactation, whereas correlations between CM2 and SCS were strongest in late lactation. Genetic correlations lower than unity indicate that CM and SCS measure different aspects of the trait mastitis. Milk yield in early lactation was more strongly correlated with both CM1 and CM2 than milk yield in later lactation. This suggests that selection for higher lactation MY through selection on increased milk yield in early lactation will have a more deleterious effect on genetic resistance to mastitis than selection for higher yield in late lactation. The approach used in this study for the estimation of the genetic associations between test-day and CM traits could be used to combine information from traits with different data structures, such as test-day SCS and CM traits in a multitrait random regression model for the genetic evaluation of udder health.  相似文献   

5.
Intramammary infections induce the initiation of the inflammatory response, resulting in an increase in somatic cell count (SCC) in milk. The SCC includes several different types of cells but does not differentiate between them. On the contrary, the new differential somatic cell count (DSCC) parameter allows for the differentiation between 2 groups of cells: polymorphonuclear neutrophils (PMN) and lymphocytes versus macrophages. Therefore, the aim of this paper was to describe the changes of both DSCC and SCC during mastitis induced by cell wall components from typical mastitis-causing pathogens [lipopolysaccharide (LPS), Escherichia coli; lipoteichoic acid (LTA), Staphylococcus aureus] known to trigger different severities of mastitis. In addition, the effect the glucocorticoid prednisolone (PRED), which is known to attenuate the immune response in the mammary gland, was investigated. Twenty dairy cows were equally divided into 5 groups and treated with LPS, LTA, LPS+PRED, LTA+PRED, or a saline control. Milk samples were taken at the following time points: baseline (d ?3, ?2, and ?1), right before treatment (d 0), 5 h after treatment (d 0.2), early cure phase (d 1 and 2), and late cure phase (d 3, 4, 5, 6, 7, and 14) and analyzed for DSCC and SCC. Mean DSCC values increased significantly from <60% at baseline and right before treatment to >81% 5 h after treatment and the early cure phase in all groups, except for the groups control and LTA+PRED. This increase clearly reflects a shift in cell populations to predominantly PMN. The SCC increased significantly following the stimulation, too, as expected. Interestingly, we observed cases where SCC increased moderately only whereas DSCC showed an evident increase, meaning that the shift in cell populations occurred even at low SCC levels. The PRED clearly lowered the cell migration in group LTA+PRED. This is the first ever study investigating DSCC during induced mastitis under controlled conditions. The combination of DSCC and SCC could be employed for the earlier detection of mastitis by revealing the shift in cell population independent from the SCC level. Furthermore, combining DSCC and SCC information could help to determine the stage of mastitis because we observed high DSCC and SCC results in the early stage of mastitis but evidently lower DSCC and high SCC in the cure phase. Hence, our results offer the first fundamental insights on how mastitis monitoring could be improved in the frame of dairy herd improvement programs.  相似文献   

6.
The objective of this study was to quantify differences in udder health and milking characteristics among the Holstein-Friesian (HF), Montbéliarde (MB), Normande (NM), Norwegian Red (NRF), Montbéliarde × Holstein-Friesian (MBX), and Normande × Holstein-Friesian (NMX) genotypes, while considering the effect of feeding system and parity. A total of 749 lactations were available for inclusion in the analysis from 309 cows in 1 research herd over 5 yr. Somatic cell score (SCS; i.e., natural logarithm of somatic cell count) was used as an indicator of udder health. Milking duration (seconds/d) was defined as the sum of the milking duration in the a.m. and milking duration in the p.m. Average daily milk flow (AMF; kg/min) was defined as total daily milk yield divided by total daily milking duration. Peak milk flow (kg/min) was defined as the maximum rate of milk flow achieved in the daily milking process. The SCS of the NRF (10.31 units) and MB (10.47 units) breeds was less than that of the HF (10.96 SCS units), whereas that of the NM (10.88 SCS units), MBX (10.93 SCS units), and NMX (10.84 SCS units) breeds was similar to that of the HF. The MBX and NMX had the greatest AMF (1.56 and 1.54 kg/min, respectively) and the NM had the lowest (1.33 kg/min). Animals offered a high concentrate diet had greater AMF, peak milk flow, and milking duration. The differences expressed by the divergent breeds may reflect differences in the past breeding goals among the breeds, namely the inclusion of traits aimed at maintaining or improving udder health.  相似文献   

7.
Production and disease data from 17,488 lactations in 48 Danish organic dairy herds from 1997 to 2001 were analyzed to obtain estimates on the effect of somatic cell counts (SCC) and mastitis treatment on milk production. A multilevel three-parameter piecewise random coefficients linear model with energy-corrected milk (ECM) as dependent variable and herd, lactation, and test days as levels, was used to model the lactation curve. Covariates related to production, SCC, veterinary treatments, and reproductive performance in the previous lactation as well as information on other diseases in the current lactation were included to describe the production capacity of the individual cow. The average daily milk production at herd level was 20.8, 24.2, and 25.8 kg of ECM/d in first, second, and third or later lactation. The estimates for production losses were on average 0.2, 0.3, and 0.4 kg of ECM/d in first, second, and third or later lactation with each twofold increase in SCC between 100,000 and 1,500,000 cells/ml. The effect varied with the stage of lactation and was nonsignificant around 60 d postpartum and highest at the end of the lactation. The production losses in cows treated for mastitis varied with parity and stage of lactation and were modified by the SCC after treatment. For a cow in third lactation with a SCC below 100,000 cells/ ml before treatment at days in milk = 15, the predicted loss was 435 kg of ECM, including a loss of 135 kg of ECM because of higher SCC compared with the level before treatment. Most of the variation in production related to SCC and mastitis was at the lactation level, and no significant differences were found between herds grouped according to milk production level, SCC, or prevalence of mastitis treatment.  相似文献   

8.
We examined consistency of the relationship between intramammary infection (IMI) and somatic cell score (SCS) across several classes of cow, herd, and sampling time variables. Microbial cultures of composite milk samples were performed by New York Quality Milk Production Services from 1992 to 2004. SCS was from the most recent Dairy Herd Improvement test before IMI sampling. Records were analyzed from 79,308 cows in 1,124 commercial dairy herds representing a broad range of production systems. Three binary dependent variables were presence or absence of contagious IMI, environmental IMI, and all IMI. Independent variables in the initial models were SCS, SCS2, lactation number, days in milk, sample day milk yield, use of coliform mastitis vaccine, participant type (required by regulation or voluntary), production system (type of housing, milking system, and herd size), season of sampling, year of sampling, and herd; also the initial models included interactions of SCS and SCS2 with other independent variables, except herd and milk yield. Interaction terms characterize differences in the IMI-SCS relationship across classes of the independent variables. Models were derived using the Glimmix macro in SAS (SAS Institute Inc., Cary, NC) with a logistic link function and employing backward elimination. The final model for each dependent variable included all significant independent variables and interactions. Simplified models omitted SCS2 and all interactions with SCS. Interactions of SCS with days in milk, use of coliform mastitis vaccine, participant type, season, and year were not significant in any of the models. Interaction of SCS with production system was significant for the all IMI model, whereas interaction of SCS with lactation number was significant for the environmental and all IMI models. Each 1-point increase in SCS (or doubling of somatic cell count) was associated with a 2.3, 5.5, and 9.1% increase in prevalence of contagious, environmental, and all IMI, respectively. Empirical receiver operator characteristic curves and areas under the curve were derived for final and simplified models. The areas under the curve for simplified and final models within each type of IMI differed by 0.009 or less. We concluded that the relationship of IMI with SCS was generally stable over time and consistent across seasons, production systems, and cow factors.  相似文献   

9.
Genetic parameters have been estimated in the Black-Face ecotype of the Latxa breed for udder type traits (udder depth and attachment and teat placement and size) at first or later lactations (considered as different traits), as well as for udder type traits, milk yield, and lactational somatic cell score, including all lactations. Genetic correlations between udder type traits at first or later lactations ranged from 0.85 and 0.95 suggesting that they are nearly identical traits. Udder type traits had moderate heritabilities. Milk yield was estimated to have a genetic correlation of 0.43 with udder depth, 0.10 with udder attachment, −0.25 with teat placement, and −0.10 with teat size, which were unfavorable in general. Genetic correlations of lactational somatic cell score were 0.10 with udder depth, −0.27 with udder attachment, −0.01 with teat placement, and 0.29 with teat size. Genetic correlations between lactational somatic cell score and udder type traits show that udders with good shape are less prone to subclinical mastitis.  相似文献   

10.
The CXCR1 gene plays an important role in the innate immunity of the bovine mammary gland. Associations between single nucleotide polymorphisms (SNP) CXCR1c.735C>G and c.980A>G and udder health have been identified before in small populations. A fluorescent multiprobe PCR assay was designed specifically and validated to genotype both SNP simultaneously in a reliable and cost-effective manner. In total, 3,106 cows from 50 commercial Flemish dairy herds were genotyped using this assay. Associations between genotype and detailed phenotypic data, including pathogen-specific incidence rate of clinical mastitis (IRCM), test-day somatic cell count, and test-day milk yield (MY) were analyzed. Staphylococcus aureus IRCM tended to associate with SNP c.735C>G. Cows with genotype c.735GG had lower Staph. aureus IRCM compared with cows with genotype c.735CC (rate ratio = 0.35, 95% confidence interval = 0.14–0.90). Additionally, a parity-specific association between Staph. aureus IRCM and SNP c.980A>G was detected. Heifers with genotype c.980GG had a lower Staph. aureus IRCM compared with heifers with genotype c.980AG (rate ratio = 0.15, 95% confidence interval = 0.04–0.56). Differences were less pronounced in multiparous cows. Associations between CXCR1 genotype and somatic cell count were not detected. However, MY was associated with SNP c.735C>G. Cows with genotype c.735GG out-produced cows with genotype c.735CC by 0.8 kg of milk/d. Results provide a basis for further research on the relation between CXCR1 polymorphism and pathogen-specific mastitis resistance and MY.  相似文献   

11.
Tinerfeñ a breed goats were assigned to 2 experimental herds and milked once (n = 28) or twice (n = 24) daily to study correlations between udder morphology, milk yield, and milking ability during the middle stage of the first lactation. Pearson correlation coefficients were significantly higher between yield and measures of udder globulousness (udder volume, r = 0.79 and r = 0.59; perimeter of insertion of the udder, r = 0.47 and r = 0.37; distance between teats, r = 0.77 and r = 0.28, for goats milked once and twice daily, respectively) than for length parameters (cistern floor distance, r = 0.40 and r = −0.29; udder depth, r = −0.20 and r = 0.20). The globulousness of the udder was correlated with easier milking ability, as shown by milk fractioning (r = 0.49 to 0.70) and milk flow measures (r = 0.32 to 0.49). The results showed that the globulousness of the udder is more important than length measurements in assessing milk yield and milking ability.  相似文献   

12.
《Journal of dairy science》2022,105(7):6251-6260
Poor udder health status can have a detrimental effect on milk yield and reproductive performance, leading to reductions in the dairy farm profit. The objective of this retrospective longitudinal study was to assess the associations of somatic cell count (SCC) with daily milk yield and reproductive performance. A database with 1,930,376 lactations from 867 Argentinean grazing dairy herds records collected for 14 years was used. The association of the evolution of SCC (healthy vs. new case vs. cured vs. chronic; with 150,000 SCC/mL as threshold) and of the severity of SCC [mild (150,000­–400,000 SCC/mL) vs. moderate (400,000–1,000,000 SCC/mL) vs. severe (>1,000,000 SCC/mL)] with the odds for conception were estimated. Finally, the associations of the linear score of SCC (LS-SCC) with daily milk yield were estimated depending on parity and milk production quartile. The odds ratios (CI 95%) for conception at first service were 0.921 (0.902–0.941), 0.866 (0.848–0.884), and 0.842 (0.826–0.859) for the new case, cured, and chronic cows compared with healthy cows, respectively. Also, the odds ratios (CI 95%) for conception were 0.902 (0.881–0.925), 0.837 (0.808–0.866) and 0.709 (0.683–0.736) for mild, moderate and severe cases compared with healthy cows, respectively. An increase of one point of LS-SCC was associated with decreases of 0.349, 0.539, and 0.676 kg in daily milk yield for first-, second-, and third-lactation cows, respectively. In conclusion, SCC is negatively associated with the risk for conception and with daily milk yield in grazing dairy cows. This negative relationship with conception is higher when SCC increase occurs after the service date and it is influenced by severity of mastitis, and in the case of milk yield, the negative association is influenced by parity, milk production quartile, and severity of mastitis.  相似文献   

13.
Udder edema (UE) is a common condition of cows around calving, but its effects are not well characterized. The objectives of this study were to determine the associations of UE with the incidence of health disorders and with milk yield and reproduction in dairy cows in early lactation. On 3 commercial farms, UE was scored weekly on 1,346 cows, on a scale of 0 to 3, from 1 wk before calving to 3 wk after calving. Among cows with complete UE scores, 30% never had edema, 12% had edema only prepartum, 11% had it only postpartum, and 48% had edema prepartum and in at least 1 wk postpartum. Udder edema was associated with a greater incidence of clinical mastitis before 30 d in milk (5 vs. 2%). Subclinical ketosis (blood β-hydroxybutyrate ≥1.2 mmol/L) was more prevalent at wk 2 (11 vs. 6%) postpartum among cows with UE. No association was observed of UE with other diseases or culling in early lactation. In a subset of 912 cows with complete UE and 3 test-days of milk yield data, differences were observed in yield at test d 1 among UE categories. Cows with UE only prepartum produced less milk (39.9 kg/d) than cows with UE postpartum only (42.4 kg/d) and cows with UE both prepartum and postpartum (41.6 kg/d), none of which differed from cows without UE (40.9 kg/d). Udder edema was not associated with the prevalence of anovulation, or the time to or probability of pregnancy at first insemination, yet to 300 d in milk, cows that had UE postpartum had a shorter time from calving to pregnancy than cows without UE. The associations of UE with health and productivity are mixed, and the mechanisms underlying UE and its effects merit further investigation.  相似文献   

14.
The Virginia Tech crossbreeding project began in the fall of 2002 by mating Holstein (H) and Jersey (J) foundation females to Holstein and Jersey bulls to create HH, HJ, JH, and JJ genetic groups, where the sire breed is listed first followed by dam breed. Collection of individual daily feed intakes began in September 2005 and continued through November 2008, resulting in observations on 43, 34, 41, and 22 HH, HJ, JH, and JJ cows, respectively. Intakes were measured for 2 wk out of every 6-wk period for first-lactation cows less than 310 d in milk. The ration was analyzed for dry matter and nutrient content, which was used to calculate net energy of lactation (NEL, Mcal/kg). Body and milk weights were collected daily with milk components measured monthly. The NEL requirements for maintenance, growth (in the form of retained energy), pregnancy, and production were calculated using National Research Council (2001) equations. Random regression models were used to predict consumed NEL and NEL required for production, maintenance, and body weight at every week in lactation. Energy required for growth was calculated for each cow at each stage of lactation using five 2-mo stages. Energy balance was estimated by subtracting the predicted energy required for production, maintenance, growth, and pregnancy from the predicted NEL consumed. A linear model with fixed effects of genetic group, year-season of calving group, and a linear and quadratic effect of age at calving was used to analyze the energy terms. The HJ and JH groups were not different in any of the analyses for energy terms. The HH cows consumed more energy than did HJ and JJ cows. There were no genetic group differences for total energy for pregnancy. The HH, HJ, and JH groups were not different from each other for energy required for production but required more energy for production than the JJ. The JH allocated a lower percentage of their energy intake to maintenance than the HH (25.7 to 27.4%) and the JJ allocated less energy to growth than the HH and HJ. Genetic group explained significant variation for percentage of energy partitioned to production with the JJ allocating more energy to production than the HH (66.3 vs. 60.9%). Genetic group differences in characterization of energy balance warrant further study.  相似文献   

15.
《Journal of dairy science》2022,105(1):595-608
The effects of postpartum milking strategy on plasma mineral concentrations, blood β-hydroxybutyrate (BHB) concentration, and colostrum, transition milk, and first monthly test milk yield and composition were evaluated in 90 multiparous Jersey and Jersey × Holstein crossbreed cows from a commercial farm. Before first postpartum milking, cows were randomly assigned to the following milking strategies, implemented during the first 2 d postpartum: twice-a-day milking (M2, standard industry practice, milking every 12 h; n = 22), once-a-day milking (M1, milking every 24 h; n = 24), restricted milking (MR, 3-L milking every 12 h; n = 21), and delayed milking (MD, no milking for the first 24 h, and milking every 12 h afterward; n = 23). Blood samples for total plasma Ca, P, and Mg determination were collected from enrollment every 4 h up to 48 h, and at 3 d in milk. Blood BHB concentration was determined at 3 and 11 d in milk. Colostrum and transition milk yields were recorded, and samples were collected at each study milking for IgG and somatic cell count (SCC) determinations. Information for first monthly test milk yield and composition was obtained from the Dairy Herd Improvement Association. Statistical analyses were conducted using generalized multiple linear and Poisson regressions with Dunnett adjustment and M2 as reference group for mean comparisons. Overall, plasma Ca concentration within 48 h after enrollment was higher for MD (2.17 mmol/L), tended to be higher for MR (2.15 mmol/L), and was similar for M1 (2.09 mmol/L) compared with M2 cows (2.06 mmol/L). No statistically significant differences compared with M2 cows were observed for plasma P and Mg concentrations. Colostrum and transition milk and total Ca harvested within 48 h after enrollment were lower for M1, MR, and MD compared with M2 cows. The MD strategy prevented harvesting colostrum with >50 g of IgG/L. No statistically significant effects were detected on plasma mineral concentrations at 3 DIM, blood BHB concentration, colostrum and transition milk SCC within 48 h after enrollment, or milk yield, energy-corrected milk yield, and SCC at first monthly test. Our results suggest that postpartum plasma Ca concentration may be influenced by postpartum milking strategy, without interfering with future milk yield and udder health. Further studies should evaluate whether the proposed milking strategies in early postpartum affect production, reproduction, or health.  相似文献   

16.
Relationships between production and diseases may involve recursive or simultaneous effects between traits. Four structural equation models (SEqM) for somatic cell score and milk yield, with varying specifications for the effects relating the 2 traits, were compared. Data consisted of repeated records of milk yield and somatic cell score of 33,453 first-lactation daughters of 245 Norwegian Red sires that had their first progeny test in 1991 and 1992. All models included random effects of the sire and of the cow and were fitted using the LISREL software. The Bayesian information criterion clearly favored a model with a recursive effect from somatic cell score on milk yield over the 3 other models fitted (absence of recursive effects; an effect from milk yield on somatic cell score; simultaneity of effects between the 2 traits). This provides evidence that the negative association between milk yield and somatic cell score is more likely due to an effect of infection (measured indirectly by the somatic cell score) on production than to a dilution effect. Estimates indicated that a mastitis event would reduce milk yield in the following 15 d by about 900 g/d. The estimated genetic (co)variances did not change sizably when the specification of recursive or simultaneous effects was varied. However, estimates of the phenotypic covariance were altered when a recursive effect from somatic cell score on milk yield was included in the model.  相似文献   

17.
Data from 113 lactations across 76 cows between the years 2002 to 2004 were used to determine the effect of strain of Holstein-Friesian (HF) dairy cow and concentrate supplementation on milk production, body weight (BW), and body condition score (BCS; 1 to 5 scale) lactation profiles. New Zealand (NZ) and North American (NA) HF cows were randomly allocated to 1 of 3 levels of concentrate supplementation [0, 3, or 6 kg of dry matter (DM)/cow per d] on a basal pasture diet. The Wilmink exponential model was fitted within lactation (YDIM = a + b e(−0.05 × DIM) + c × DIM). The median variation explained by the function for milk yield was 86%, between 62 and 69% for milk composition, and 80 and 70% for BW and BCS, respectively. North American cows and cows supplemented with concentrates had greater peak and 270-d milk yield. Concentrate supplementation tended to accelerate the rate of incline to peak milk yield, but persistency of lactation was not affected by either strain of HF or concentrate supplementation. No significant strain by diet interaction was found for parameters reported. New Zealand cows reached nadir BCS 14 d earlier and lost less BW (22 kg) postcalving than NA cows. Concentrate supplementation reduced the postpartum interval to nadir BW and BCS, and incrementally increased nadir BCS. New Zealand cows gained significantly more BCS (i.e., 0.9 × 10−3 units/d more) postnadir than NA cows, and the rate of BCS replenishment increased linearly with concentrate supplementation from 0.5 × 10−3 at 0 kg of DM/d to 0.8 × 10−3 and 1.6 × 10−3 units/d at 3 and 6 kg of DM/d concentrates, respectively. Although there was no significant strain by diet interaction for parameters reported, there was a tendency for a strain by diet interaction in 270-d BCS, suggesting that the effect of concentrate supplementation on BCS gain was, at least partly, strain dependent.  相似文献   

18.
In this study, the correlation was determined between the prevalence of high cow-level somatic cell count (SCC >250,000 cells/mL), a summary of the subclinical mastitis situation in a dairy herd, and 3 average herd SCC parameters: bulk milk SCC (BMSCC), yield-corrected test-day SCC (CHSCC), and the arithmetic average test-day SCC (HSCC) of the lactating herd. The herd prevalence of cows with an SCC of >250,000 cells/mL was calculated by using Dairy Herd Improvement data. Herds were included if BMSCC was sampled within 2 d of the Dairy Herd Improvement test day and if the BMSCC did not exceed 400,000 cells/mL. The interval between sampling, 0, 1, or 2 d, did not significantly influence the correlation between BMSCC and the prevalence of high SCC. The correlations between the prevalence of high SCC and BMSCC, yield-corrected test-day SCC, and HSCC, examined by using a linear regression model, were 0.64, 0.78, and 0.89, respectively. Therefore, it can be concluded that, based on the highest correlation, HSCC is a more appropriate parameter than BMSCC to summarize the average herd subclinical mastitis situation in a dairy herd.  相似文献   

19.
《Journal of dairy science》2021,104(10):10934-10949
Mastitis is one of the most prevalent diseases in dairy cattle and is the cause of considerable economic losses. Alongside somatic cell count (SCC), differential somatic cell count (DSCC) has been recently introduced as a new indicator of intramammary infection. The DSCC is expressed as a count or a proportion (%) of polymorphonuclear neutrophils plus lymphocytes (PMN-LYM) in milk somatic cells. These numbers are complemented to total somatic cell count or to 100 by macrophages (MAC). The aim of this study was to investigate the genetic variation and heritability of DSCC, and its correlation with milk composition, udder health indicators, milk composition, and technological traits in Holstein cattle. Data used in the analysis consisted in single test-day records from 2,488 Holstein cows reared in 36 herds located in northern Italy. Fourier-transform infrared (FTIR) spectroscopy was used to predict missing information for some milk coagulation and cheese-making traits, to increase sample size and improve estimation of the genetic parameters. Bayesian animal models were implemented via Gibbs sampling. Marginal posterior means of the heritability estimates were 0.13 for somatic cell score (SCS); 0.11 for DSCC, MAC proportion, and MAC count; and 0.10 for PMN-LYM count. Posterior means of additive genetic correlations between SCS and milk composition and udder health were low to moderate and unfavorable. All the relevant genetic correlations between the SCC traits considered and the milk traits (composition, coagulation, cheese yield and nutrients recovery) were unfavorable. The SCS showed genetic correlations of −0.30 with the milk protein proportion, −0.56 with the lactose proportion and −0.52 with the casein index. In the case of milk technological traits, SCS showed genetic correlations of 0.38 with curd firming rate (k20), 0.45 with rennet coagulation time estimated using the curd firming over time equation (RCTeq), −0.39 with asymptotic potential curd firmness, −0.26 with maximum curd firmness (CFmax), and of −0.31 with protein recovery in the curd. Differential somatic cell count expressed as proportion was correlated with SCS (0.60) but had only 2 moderate genetic correlations with milk traits: with lactose (−0.32) and CFmax (−0.33). The SCS was highly correlated with the log PMN-LYM count (0.79) and with the log MAC count (0.69). The 2 latter traits were correlated with several milk traits: fat (−0.38 and −0.43 with PMN-LYM and MAC counts, respectively), lactose percentage (−0.40 and −0.46), RCTeq (0.53 and 0.41), tmax (0.38 and 0.48). Log MAC count was correlated with k20 (+0.34), and log PMN-LYM count was correlated with CFmax (−0.26) and weight of water curd as percentage of weight of milk processed (−0.26). The results obtained offer new insights into the relationships between the indicators of udder health and the milk technological traits in Holstein cows.  相似文献   

20.
The aim of this study was to 1) detect QTL across the cattle genome that influence the incidence of clinical mastitis and somatic cell score (SCS) in Danish Holsteins, and 2) characterize these QTL for pleiotropy versus multiple linked quantitative trait loci (QTL) when chromosomal regions affecting clinical mastitis were also affecting other traits in the Danish udder health index or milk production traits. The chromosomes were scanned using a granddaughter design where markers were typed for 19 to 34 grandsire families and 1,373 to 2,042 sons. A total of 356 microsatellites covering all 29 autosomes were used in the scan. Among the across-family regression analyses, 16 showed chromosome-wide significance for the primary traits incidence of clinical mastitis in first (CM1), second (CM2), and third (CM3) lactations, and SCS. Regions of chromosomes 5, 6, 9, 11, 15, and 26 were found to affect CM and regions of chromosomes 5, 6, 8, 13, 22, 23, 24, and 25 affected SCS. Markers on chromosomes 6, 11, 15, and 26 can be used to perform marker-assisted selection on CM without a direct negative selection on milk yield, because no effects were detected on the milk traits. Comparing multi-trait models assuming either a pleiotropic QTL affecting 2 traits or 2 QTL each affecting 1 trait gave some evidence to distinguish between these models. For Bos taurus autosome 5, the most likely models were a pleiotropic QTL affecting CM2, CM3, and SCS, and a linked QTL affecting fat yield index. For Bos taurus autosome 9, the most likely model is a pleiotropic QTL affecting CM1 and CM2 at approximately 8 cM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号