首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caprine colostrums (6 batches) were subjected to heat (56°C for 60 min and 63°C for 30 min) and high-pressure (400 and 500 MPa for 10 min at 20°C) treatments at laboratory scale, and analyses of the main microbial groups and the extent of IgG denaturation (determined by immunodiffusion) were performed. Overall mean microbial values in raw colostrums were: total count, 5.55 log cfu/mL; Enterobacteriaceae, 2.64 log cfu/mL; lactococci, 5.41 log cfu/mL; lactobacilli, 2.34 log cfu/mL; and enterococci, 4.06 log cfu/mL. Neither Salmonella spp. nor Listeria monocytogenes were detected, whereas coagulase-positive staphylococci were found in various colostrum samples with an overall mean of 1.02 log cfu/mL. Heat and high-pressure treatments significantly reduced total count (1.47 log), lactococci (1.45 log), enterococci (2.47 log), and Enterobacteriaceae, whereas lactobacilli and coagulase-positive staphylococci counts were reduced to undetectable levels, but differences between technological treatments were not statistically significant. High-pressure treatments were as efficient in reducing the bacterial population as were heat pasteurization treatments: 95.50 and 96.93% for pressure treatments of 400 and 500 MPa, and 91.61 and 97.59% for heat treatments of 56°C for 60 min and 63°C for 30 min, respectively. All treatments assayed produced a reduction in colostrum IgG concentration (27.53, 23.58, 23.33, 22.09, and 17.06 mg/mL for raw, heat-treated at 56°C for 60 min or 63°C for 30 min, and pressure-treated at 400 and 500 MPa, respectively), but differences were only observed between raw colostrums and those pressure-treated at 500 MPa. This laboratory-scale study indicated that 20- to 30-mL volumes of goat colostrum could be heated and pressure-treated (400 MPa) to produce hygienic colostrum without affecting IgG concentration.  相似文献   

2.
The effect of high-pressure homogenization (HPH) alone or in combination with a thermal treatment (TT) was investigated for the manufacture of acid gels from skim milk. Raw skim milk was subjected to HPH (0 to 350 MPa) or a TT (90°C, 5 min), or both, in the following processing combinations: 1) HPH, 2) HPH followed by TT, 3) TT followed by HPH, 4) TT, and 5) raw milk (control). After treatments, L* (lightness) values were measured, and then skim milk was acidified with 3% glucono-δ-lactone and rheological properties (G′ and gelation time), and whey holding capacity was evaluated. Treatments in which HPH and TT were combined showed greater L* values than those in which just HPH was applied. In all treatments, the L* values decreased as the pressure was increased up to 300 MPa with little change afterward. Gelation times were lower when HPH was combined with TT compared with the acid skim milk gels that were just pressure treated. The final G′ in gels obtained from skim milk subjected to the combined process (HPH and TT) was greater and pressure-dependent compared with all other gels. A maximum G′ (∼320 Pa) was observed with skim milk subjected to a combination of thermal processing before or after HPH at 350 MPa. Acid gels obtained from HPH milk at 350 MPa showed a linear decrease in whey holding capacity over time, retaining 20% more whey after centrifugation for 25 min compared with samples treated at lower pressures and all other treatments. Our results suggest that HPH in combination with TT can be used to improve the rheological properties and stability of yogurt, thus decreasing the need for additives.  相似文献   

3.
Queso Fresco (QF), a popular high-moisture, high-pH Hispanic-style cheese sold in the United States, underwent high-pressure processing (HPP), which has the potential to improve the safety of cheese, to determine the effects of this process on quality traits of the cheese. Starter-free, rennet-set QF (manufactured from pasteurized, homogenized milk, milled before hooping, and not pressed) was cut into 4.5- × 4.5- × 15-cm blocks and double vacuum packaged. Phase 1 of the research examined the effects of hydrostatic HPP on the quality traits of fresh QF that had been warmed to a core temperature of 20 or 40°C; processed at 200, 400, or 600 MPa for 5, 10, or 20 min; and stored at 4°C for 6 to 8 d. Phase 2 examined the long-term effects of HPP on quality traits when QF was treated at 600 MPa for 3 or 10 min, and stored at 4 or 10°C for up to 12 wk. Warming the QF to 40°C before packaging and exposure to high pressure resulted in loss of free whey from the cheese into the package, lower moisture content, and harder cheese. In phase 2, the control QF, regardless of aging temperature, was significantly softer than HPP cheeses over the 12 wk of storage. Hardness, fracture stress, and fracture rigidity increased with length of exposure time and storage temperature, with minor changes in the other properties. Queso Fresco remained a bright white, weak-bodied cheese that crumbled and did not melt upon heating. Although high pressures or long processing times may be required for the elimination of pathogens, cheese producers must be aware that HPP altered the rheological properties of QF and caused wheying-off in cheeses not pressed before packaging.  相似文献   

4.
Kuo-Chiang Hsu 《LWT》2008,41(3):450-459
Effects of processing conditions including hot-break processing (92 °C for 2 min), cold-break processing (60 °C for 2 min) and hydrostatic pressure treatments (100-500 MPa) at different temperatures (4, 25 and 50 °C) for 10 min on quality aspects of tomato juice were investigated. Both hot- and cold-break processing induced significant changes in color, viscosity and radical-scavenging capacity of tomato juice compared with control (fresh tomato juice); moreover, hot-break processing induced a specific range of reduction of pectin methylesterase (PME) and polygalacturonase (PG) activities. Pressure treatments at and below 200 MPa at 4 and 25 °C maintained the color, extractable total carotenoids and lycopene, and radical-scavenging capacity; further, those at 500 MPa at 4 and 25 °C improved all the quality attributes the most except inactivation of PME in this study. The residual activity of PME showed the lowest after treating by 200 MPa at 25 °C; however, the PME activity was enhanced by treatments at 300-500 MPa and various temperatures. The residual activity of PG decreased gradually to 72% with pressure elevated from 100 to 400 MPa at 4 and 25 °C, further, that declined quickly to 10% after 500 MPa treatments. This research clearly shows that it is possible to selectively produce good tomato juice products by high pressure processing at ambient temperature.  相似文献   

5.
A study was conducted to evaluate the efficacy of various combinations of pressure and thermal treatments in preserving textural quality of selected foods. Carrot, zucchini, apricot, red radish, and jicama were used as test samples. Pressure-assisted thermal processing (PATP; 600 MPa, 105 °C), high-pressure processing (HPP; 600 MPa, 25 °C), and thermal processing (TP; 105 °C, 0.1 MPa) experiments were conducted. Role of pressure (600 MPa) in preserving product quality while simultaneously (PATP) or sequentially (HPP-TP) exposed to elevated process temperature (105 °C) was also compared. Instrumental puncture, shear force, color and sensory analyses were utilized to compare the influence of the various process treatments. A crunchiness index (CI), relating product puncture force and stiffness, was able to characterize the severity of the process treatments on various products tested. Among the treatments, TP was the worst at retaining texture, but HPP-TP improved texture retention. In comparison to TP alone, PATP better retained texture and color. Jicama was least influenced by the treatments as compared to products tested. Process treatments investigated degraded the textural quality of zucchini and apricot. Instrumental CI results were also in agreement with the sensory data of carrot, red radish and jicama samples.  相似文献   

6.
The effects of a previous heat treatment (60 and 80 °C, 30 min) and high-pressure (400 MPa, 25 and 60 °C, 1 h) on the subsequent lactosylation of β-lactoglobulin (50 °C, 44% RH, 120 h) were investigated. A control of native β-lactoglobulin was also stored under the afore-mentioned conditions. The structural changes caused during these treatments were studied by the loss of amino groups, SE-HPLC and native-PAGE and the degree of lactosylation was evaluated by means of furosine determination. After thermal and high-pressure treatments, the greatest structural changes were observed in the case of samples of β-lactoglobulin treated at 80 °C, 30 min and 400 MPa, 60 °C, 1 h. During storage, the highest lactosylation degree was found in native β-lactoglobulin. In heat-treated samples, the increase of lactosylated lysines was lower than the decrease of free amino groups, probably due to the cross-linking reactions. A similar decrease of free amino groups of β-lactoglobulin was observed immediately after 400 MPa, 60 °C, 1 h and 80 °C, 30 min; however, the level of lactosylation during the storage period was lower in the former, indicating different types of conformational changes in the two treatments. These differences lead to a higher effectiveness of heat-treatment than high-pressure in denaturating β-lactoglobulin for subsequent lactosylation under the tested conditions (of temperature, time, high-pressure and storage).  相似文献   

7.
The effect of high-pressure processing (pressure levels of 400, 500 and 600 MPa, and exposure times of 5 and 10 min) on the volatile profile of vacuum-packaged sliced cooked pork shoulder held for 28 days at 4 °C was assessed. The volatile fraction of pressurized samples scarcely changed immediately after treatment and remained stable for 14 days, regardless the pressure and time of exposure. After 21 days of storage, significant differences were observed in the profile of volatile compounds in pressurized samples as compared with control samples, these differences being treatment dependent. At the end of the storage period, control and 400 MPa samples showed higher levels of acetic and fatty acids, ethanol and ethyl esters, whereas 500 and 600 MPa samples contained higher levels of ethanal, branched-chain aldehydes, diacetyl, acetoin, and 2,3-butanediol among other compounds. These results suggest that the high-pressure treatment had a discriminant effect on the microbiota of cooked pork shoulder, which led to the accumulation of different volatile compounds during the refrigerated storage of control and pressurized samples.  相似文献   

8.
The effect of high-intensity pulsed electric fields (HI-PEF) processing (35.5 kV/cm for 1,000 or 300 μ with bipolar 7-μs pulses at 111 Hz; the temperature outside the chamber was always < 40° C) on microbial shelf life and quality-related parameters of whole milk were investigated and compared with traditional heat pasteurization (75° C for 15 s), and to raw milk during storage at 4° C. A HIPEF treatment of 1,000 μ ensured the microbiological stability of whole milk stored for 5 d under refrigeration. Initial acidity values, pH, and free fatty acid content were not affected by the treatments; and no proteolysis and lipolysis were observed during 1 wk of storage in milk treated by HIPEF for 1,000 μ. The whey proteins (serum albumin, β-lactoglobulin, and α-lactalbumin) in HIPEF-treated milk were retained at 75.5, 79.9, and 60%, respectively, similar to values for milk treated by traditional heat pasteurization.  相似文献   

9.
Effects of high-pressure treatment (100 MPa to 600 MPa) on lipid oxidation and composition of fatty acids in yak body fat at 4 °C and 15 °C were investigated for up to 20 days storage. 400 and 600 MPa treatments increase the level of thiobarbituric acid-reactive substances (TBARS) 335% and 400% (p < 0.05), respectively. Composition analysis shows that 600 MPa treatment induces a lower (p < 0.05) percentage of polyunsaturated fatty acids, and C22:6 decreased significantly. A significant decrease in PUFA/SFA and n-6/n-3 PUFA values was observed at the end of storage. Samples treated at the lower pressures gave good sensory acceptability. It is concluded that a higher-pressure treatment is important in catalyzing lipid oxidation and the evolution of fatty acids in pressure-treated yak body fat.  相似文献   

10.
High-pressure homogenization (HPH) of milk was studied as an alternative processing operation in the manufacturing of queso fresco cheese. Raw and pasteurized (65°C for 30 min) milks were subjected to HPH at 0, 100, 200, and 300 MPa and then used to manufacture queso fresco. The cheeses were evaluated for yield, moisture content, titratable acidity, nitrogen content, whey protein content, yield force, yield strain, and tactile texture by instrumental or trained panel analyses. The combination of HPH and thermal processing of milk resulted in cheeses with increased yield and moisture content. The net amount of protein transferred to the cheese per kilogram of milk remained constant for all treatments except raw milk processed at 300 MPa. The highest cheese yield, moisture content, and crumbliness were obtained for thermally processed milk subjected to HPH at 300 MPa. The principal component analysis of all measured variables showed that the variables yield, moisture content, and crumbliness were strongly correlated to each other and negatively correlated to the variables yield strain, protein content (wet basis), and sensory cohesiveness. It is suggested that the combination of thermal processing and HPH promotes thermally induced denaturation of whey protein, together with homogenization-induced dissociation of casein micelles. The combined effect results in queso fresco containing a thin casein-whey matrix that is able to better retain sweet whey. These results indicate that HPH has a strong potential for the manufacture of queso fresco with excellent yield and textural properties.  相似文献   

11.
The effect of high hydrostatic pressure on turbidity of skim milk was measured in situ together with casein micelle size distribution. High pressure (HP) treatment reduced the turbidity of milk with a stronger pressure dependency between 50 and 300 MPa when the temperature was decreased from 20 to 5 °C, while at 30 °C (50–150 MPa) turbidity exceeded that of untreated milk. At 250 and 300 MPa turbidity decreased extremely. During pressurization of milk at 250 and 300 MPa, the turbidity initially decreased, but treatments longer than 10 min increased the turbidity progressively, indicating that re-association followed dissociation of casein micelles. Especially at 40 °C and at 250 and 300 MPa, the turbidity increased beyond untreated milk. Dynamic light scattering was used to investigate casein micelle sizes in milk immediately after long time (up to 4 h) pressurization at 250 and 300 MPa and casein micelle size distributions were bimodal with micelle sizes markedly smaller and markedly larger than those of untreated milk. Pressure modified casein micelles present after treatment of milk at 250 and 300 MPa were concluded to be highly unstable, since the larger micelles induced by pressure showed marked changes toward smaller particle sizes in milk left at ambient pressure.  相似文献   

12.
The objective of this study was to characterize the impact of heat treatments on the distribution of transforming growth factor-beta (TGF-??2) between cream and skim milk and between the casein and whey fractions of skim milk. Skimming removed 45% and 62% of the TGF-??2 from raw and pasteurized milks and only 8% of the total TGF-??2 in skimmed pasteurized milk was found in whey, compared to 37% in whey from raw skimmed milk. The TGF-??2 content of whey decreased as the heat treatment of the milk increased in intensity (thermization > pasteurization > UHT sterilization). Using milk held for 1 or 2 min at temperatures ranging from 57 to 84 °C, it was shown that TGF-??2 in the whey portion decreases at temperatures above 66 °C and becomes undetectable at temperatures higher than 76 °C. Altogether, these data on the heat-induced changes in TGF-??2 content of cream, skim milk, casein and whey reveal a potentially negative impact of certain heat treatments in developing TGF-??2-enriched fractions from milk.  相似文献   

13.
High Pressure (HP) treatment of milk prior to cheese-making was shown to increase the yield of cheese due to increased protein and moisture retention in cheese. Cheeses were made with raw milk or milk treated with high temperature short-time (HTST) pasteurization, and HP treatments at two levels (483 and 676 MPa) at 10 °C, 483 MPa HP at 30 °C, and 483 MPa HP at 40 °C. Cheese yield, total solids, protein, fat and salt contents were evaluated, and fat and protein recovery indices were calculated. Cheeses from HP treatments of 676 MPa at 10 °C and 483 MPa at 30 °C exhibited wet yields of 11.40% and 11.54%, respectively. Protein recovery was 79.9% for HP treatment of 676 MPa at 10 °C. The use of slightly higher pressurization temperatures increased moisture retention in cheese. Visco-elasticity of cheeses was determined by dynamic oscillatory testing and a creep-recovery test. Rheological parameters such as loss (G″) and storage (G′) moduli were dependent on oscillation frequency. At high (173 rad/s) and low (2.75 rad/s) angular frequencies, cheeses made from milk treated at 483 MPa at 10 °C behaved more solid-like than other treatments. Creep tests indicated that cheeses from milk treated with 483 MPa HP at 10 °C showed the smallest instantaneous compliance (Jo), confirming the more solid-like behavior of cheese from the 483 MPa at 10 °C treatment compared to the behavior of cheeses from other treatments. Cheeses made with pasteurized milk were more deformable, exhibited less solid-like behavior than cheeses made with HP treated milk, as shown by the Jo value. With more research into bacteriological implications, HP treatment of raw milk can augment Cheddar cheese yield with better curd formation properties.  相似文献   

14.
In plant matrices, folates exist largely as folylpoly-γ-glutamates requiring deglutamylation to monoglutamates prior to absorption, which might impair dietary folate bioavailability. This study investigated folylpoly-γ-glutamate stability and conversions in broccoli tissue during thermal (25–90 °C, 30 min) and high-pressure treatments (0.1–600 MPa, 25–45 °C, 30 min) after vacuum packaging. Folates were analyzed based on poly-γ-glutamate side chain length by RP-HPLC. During thermal treatments, folates were stable up to 90 °C, whereas differences in folylpoly-γ-glutamate profiles towards higher conjugated folylpoly-γ-glutamates were observed at elevated temperatures (70–90 °C). High-pressure treatments resulted in significant folate losses (48–78%). Depending on the pressure–temperature combinations studied, folylpoly-γ-glutamates were converted to folylmono- and folyldi-γ-glutamates, which was shown to occur mainly during the initial stages of the high-pressure treatments, i.e. during pressure build-up and subsequent equilibration. Targeted application of high-pressure treatments can hence be applied to obtain broccoli with higher monoglutamate folate content. Implications towards folate bioavailability in relation to the observed folate degradation, however, requires further investigation.  相似文献   

15.
The effects of single- or 2-stage ultra-high pressure homogenization (UHPH; 100 to 330 MPa) at an inlet temperature of 30°C on the cheese-making properties of bovine milk were investigated. Effects were compared with those from raw, heat-pasteurized (72°C for 15 s), and conventional homogenized-pasteurized (15 + 3 MPa, 72°C for 15 s) treatments. Rennet coagulation time, rate of curd firming, curd firmness, wet yield, and moisture content of curds were assessed. Results of particle size and distribution of milk, whey composition, and gel microstructure observed by confocal laser scanning microscopy were analyzed to understand the effect of UHPH. Single-stage UHPH at 200 and 300 MPa enhanced rennet coagulation properties. However, these properties were negatively affected by the use of the UHPH secondary stage. Increasing the pressure led to higher yields and moisture content of curds. The improvement in the cheese-making properties of milk by UHPH could be explained by changes to the protein-fat structures due to the combined effect of heat and homogenization.  相似文献   

16.
The effect of high pressure (HP; 300 and 400 MPa for 5 min at 6 °C) on physico-chemical, microbial, color, texture and sensorial characteristics of starter-free fresh cheeses stored at 4 and 8 °C was studied. Physico-chemical parameters considered were total solids, fat, total protein, pH, whey loss and water activity. The microbiological quality was studied, on cheeses stored at 4 and 8 °C, by enumerating aerobic mesophilic bacteria, lactococci, psychrotrophic bacteria, Enterobacteriaceae, Escherichia coli, molds and yeasts. Cheeses treated at 300 and 400 MPa, stored at 4 °C, presented a shelf-life of 14 and 21 days, respectively, compared to untreated control cheese, which presented a shelf life of 7 days. On the other hand, HP treatments modified the texture (more firm) and color (more yellow) compared to control cheeses. These changes were detected by instrumental and sensory analysis.  相似文献   

17.
Donor human milk is the first alternative for preterm infants when mother's own milk is not available. Most available human milk banking guidelines recommend classical holder pasteurization to ensure safety by eliminating potential infectious microorganisms. Processing by heat treatment, however, negatively affects functionality and availability of bioactive components naturally present in human milk. Here we compared the effect of five different processing methods on the ability of human milk to induce blood plasma clotting, which was recently described as a bioactive function present in human milk. From thirty lactating women, milk samples were collected, and all milk samples were subjected to holder pasteurization (30 min at 62.5 °C), high-temperature-short-time pasteurization (15 s at 72 °C), high-pressure processing (5 min at 500 MPa), ultraviolet-C irradiation (4863 J/L), or thermo-ultrasonication (6 min at 60 W, at 40 °C). All methods significantly reduced the ability of milk to trigger blood plasma clotting compared to untreated milk, but ultraviolet-C irradiation and high-pressure processing were best at preserving this activity. Taken together, measuring the ability of milk to induce blood plasma clotting may offer a new tool to monitor the effect of human milk processing.  相似文献   

18.
The kinetics of the formation of radicals in meat by high pressure processing (HPP) has been described for the first time. A threshold for the radicals to form at 400 MPa at 25 °C and at 500 MPa at 5 °C has been found. Above this threshold, an increased formation of radicals was observed with increasing pressure (400–800 MPa), temperature (5–40 °C) and time (0–60 min). The volume of activation (ΔV#) was found to have the value −17 ml mol−1. The energy of activation (Ea) was calculated to be 25–29 kJ mol−1 within the pressure range (500–800 MPa) indicating high independence on the temperature at high pressures whereas the reaction was strongly dependent at atmospheric pressure (Ea = 181 kJ mol−1). According to the effect of the processing conditions on the reaction rate, three groups of increasing order of radical formation were established: (1) 55 °C at 0.1 MPa, (2) 500 and 600 MPa at 25 °C and 65 °C at 0.1 MPa, and (3) 700 MPa at 25 °C and 75 °C at 0.1 MPa. The implication of the formation of radicals as initiators of lipid oxidation under HPP is discussed.  相似文献   

19.
The effects of high pressure and heat treatments on peroxidase (POD) activity in kiwifruit were investigated. Pressure levels ranging from 200 to 600 MPa and temperatures varying from 10 to 50 °C were applied for up to 30 min. Assays were carried out on crude peroxidase in kiwifruit juice and on partially purified peroxidase in a model system. Pressures higher than 400 MPa could be combined with mild heat (?50 °C) to accelerate enzyme inactivation. Prolongation of the exposure time had no great effect after the first 15 min. The slope of POD in kiwifruit juice at 30 °C was slightly decreased compared with that in a model system. Furthermore, the optimum pH for POD was 6.0–8.5. The presence of POD isoenzymes and their difference in resistance to pressure were thought to be responsible for the final residual activity observed in this study.  相似文献   

20.
The effect of high-hydrostatic-pressure processing (HPP) on the survival of a 5-strain rifampicin-resistant cocktail of Listeria monocytogenes in Queso Fresco (QF) was evaluated as a postpackaging intervention. Queso Fresco was made using pasteurized, homogenized milk, and was starter-free and not pressed. In phase 1, QF slices (12.7 × 7.6 × 1 cm), weighing from 52 to 66 g, were surface inoculated with L. monocytogenes (ca. 5.0 log10 cfu/g) and individually double vacuum packaged. The slices were then warmed to either 20 or 40°C and HPP treated at 200, 400, and 600 MPa for hold times of 5, 10, 15, or 20 min. Treatment at 600 MPa was most effective in reducing L. monocytogenes to below the detection level of 0.91 log10 cfu/g at all hold times and temperatures. High-hydrostatic-pressure processing at 40°C, 400 MPa, and hold time ≥15 min was effective but resulted in wheying-off and textural changes. In phase 2, L. monocytogenes was inoculated either on the slices (ca. 5.0 log10 cfu/g; ON) or in the curds (ca. 7.0 log10 cfu/g; IN) before the cheese block was formed and sliced. The slices were treated at 20°C and 600 MPa at hold times of 3, 10, and 20 min, and then stored at 4 and 10°C for 60 d. For both treatments, L. monocytogenes became less resistant to pressure as hold time increased, with greater percentages of injured cells at 3 and 10 min than at 20 min, at which the lethality of the process increased. For the IN treatment, with hold times of 3 and 10 min, growth of L. monocytogenes increased the first week of storage, but was delayed for 1 wk, with a hold time of 20 min. Longer lag times in growth of L. monocytogenes during storage at 4°C were observed for the ON treatment at hold times of 10 and 20 min, indicating that the IN treatment may have provided a more protective environment with less injury to the cells than the ON treatment. Similarly, HPP treatment for 10 min followed by storage at 4°C was the best method for suppressing the growth of the endogenous microflora with bacterial counts remaining below the level of detection for 2 out of the 3 QF samples for up to 84 d. Lag times in growth were not observed during storage of QF at 10°C. Although HPP reduced L. monocytogenes immediately after processing, a second preservation technique is necessary to control growth of L. monocytogenes during cold storage. However, the results also showed that HPP would be effective for slowing the growth of microorganisms that can shorten the shelf life of QF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号