首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
刘鹏  王好臣 《工具技术》2007,41(7):68-70
为了提高加工精度,对小直径立铣刀的应力场进行了有限元分析。通过铣削力试验,对不同切削参数下立铣刀的铣削力进行动态采集,利用UG建模模块进行立铣刀实体建模,根据铣削力试验结果给出边界条件,在立铣刀有限元模型上加载载荷,利用UG有限元分析模块获得了立铣刀切削过程中切入、切出的瞬时应力场云图,显示了切削中立铣刀应力场的变化规律。  相似文献   

2.
针对立铣刀三维建模困难及铣削时切削力难以预测等问题,根据微分几何原理建立立铣刀数学模型。基于数学模型将铣刀切削刃离散成斜角切削单元,根据剪切区应力、应变和温度控制方程,由材料本构方程计算流动应力,通过坐标变换关系建立铣削力预测模型。得到的铣削力与已有铣削试验数据一致,验证了铣削力模型的有效性。  相似文献   

3.
刘宽  孙剑飞 《工具技术》2019,53(4):54-57
在航空发动机叶轮加工过程中,径向铣削力带来的切削振动对加工质量有较大的影响。为了降低切削振动,基于某叶轮的实际加工工况,利用有限元仿真和MATLAB软件计算进行了铣削力建模和分析,以减小切削振动幅值、降低铣刀弯曲变形程度为优化条件进行了铣刀结构的优化设计。  相似文献   

4.
研究球头立铣刀几何参数优化问题。由于球头立铣刀的几何角度对其切削性能有着重要的影响,因此选择合适的几何参数十分重要。为改善铣刀优化设计提出了以前角、螺旋角和一次后角为试验因素的多元非线性铣削力预报模型的建模方法。通过有限元仿真分析,获得了正交试验数据样本,利用回归技术对其进行分析,确定了铣削力预报模型,采用遗传算法对铣刀几何角度进行优化,通过MATLAB软件仿真最终得到了铣削力最小时的最优几何参数值。结果表明:所选几何参数与铣削力确实有非线性回归关系,且优化后的几何参数组合所对应的铣削力比正交组合试验方案所得铣削力最少降低了2.02%,铣削温度最多降低了83℃。  相似文献   

5.
应用Pro/E软件对可转位立铣刀进行了三维建模,并将三维模型导入ANSYS有限元软件中对可转位立铣刀在高速旋转情况下进行应力场分析,得到可转位立铣刀各部件在不同转速下的最大等效应力及其变化趋势;指出了可转位立铣刀在高速切削时的薄弱环节,为高速铣削刀具主轴转速的选择提供了依据。  相似文献   

6.
用改进后的铣削力测量装置进行了不同槽型的铣刀片铣削力试验。基于铣削试验结果,通过机床坐标系与刀体坐标系统的转换,确立了铣刀片应力场有限元分析的载荷边晃条件。利用ANSYS软件,进行了自主研发的三维槽型铣刀片和平刀面铣刀片的应力场有限元分析。有限元分析及试验结果均表明,三维槽型铣刀片的应力场及抗破损能力均好于平前刀面铣刀片。  相似文献   

7.
介绍了立铣刀切削力的计算方法,利用有限元分析软件ANSYS对干式切削立铣刀切削时的受力、变形情况进行了模拟,并分析了改变立铣刀法前角对立铣刀强度和变形的影响。研究结果为立铣刀的优化设计提供了参考依据。  相似文献   

8.
针对模具型腔内外拐角铣削过程,分析球头铣刀铣削直线、内拐角、外拐角的切削层变化规律,建立了基于加工特征的铣削力预测模型。利用UG绘图软件建立了球头铣刀及工件的三维几何模型,并通过DEFORM-3D仿真软件对Cr12MoV模具钢的高速铣削过程进行有限元仿真,预测了球头铣刀在铣削直线段、内拐角和外拐角的铣削力,以及内外拐角时工件曲率半径对铣削力的影响。利用三轴数控加工中心进行高速铣削实验,实验结果表明:实验所得到的铣削力与仿真结果具有很好的吻合度,证明了铣削力理论计算模型的正确性,从而验证了仿真预测的准确性和可靠性。  相似文献   

9.
通过Solidworks建立了立铣刀三维模型,采用ABAQUS有限元分析软件对立铣刀加工铝合金2A12的铣削过程进行仿真,分析不同铣削参数下的仿真结果,得出高速钢立铣刀各铣削分力随铣削深度、每转进给量和铣刀转速的变化趋势,并进行铣削试验。经过对比仿真结果,与实验结果较为吻合。进行正交仿真,基于铣削力经验模型,用matlab拟合出高速钢立铣刀铣削铝合金2A12的铣削力经验公式,为铣削参数的优化和刀具磨损研究提供理论依据。  相似文献   

10.
通过对喷油螺杆压缩机结构和工作原理的分析,根据端面型线建立转子螺旋曲面方程,利用无瞬心包络法原理,并分析了精加工过程中成型铣刀与转子的相对运动关系,推导出具有一定前角和恒定后角的铣刀刀刃廓形方程;利用MATLAB仿真,得到铣刀刀刃廓形曲面图,利用UG软件绘制出铲齿成型铣刀的模型图,实现建模;考虑到螺旋槽加工过程中铣削力和切削热引起的刀具变形对转子加工精度的影响,利用ANSYS有限元分析,得出转子加工过程中刀具的变形量很小,可忽略不计。  相似文献   

11.
面铣铣削力试验分析及受力密度函数研究   总被引:4,自引:0,他引:4  
为建立铣刀片铣削力模型,进行了铣削力试验,对铣削力数据进行了采集,并对铣削力的试验数据进行了分析及数据拟合,以切削理论为依据建立铣削力数学模型及铣削力受力密度函数,为面铣刀的应力分析及评价提供了条件,同时为复杂槽型铣刀片的应力场分析及评价奠定了理论基础。  相似文献   

12.
基于有限元软件ABAQUS平台,使用数值仿真技术,建立了高速铣削环境下45钢的二维等效简化有限元模型,重点研究了铣削过程中铣削速度和背吃刀量的变化对铣削力的影响,并通过实验验证了有限元模型仿真结果的合理性;用计算机辅助工程的方法解决了高速铣削过程中切削力难以确定的问题。  相似文献   

13.
在骨科手术中,铣削力对骨裂纹和加工表面质量影响较大。由于临床球形骨铣刀结构复杂,目前尚无有效的理论模型预测切削力。通过引入三维有限元模型模拟球形铣刀加工骨材料过程,评估不同加工参数下的铣削力值。搭建骨铣削试验平台模拟临床操作中的铣削过程,并利用采集到的加工信号分析铣削力。通过试验结果与仿真结果的对比,验证了有限元仿真模型的合理性。该骨铣削有限元模型能够满足不同加工参数下铣削力预测精度的要求,方便指导医生根据不同要求选择合适的加工参数。  相似文献   

14.
张国福  王扬 《工具技术》2012,46(9):93-95
通过分析影响盘形可转位大模数齿轮铣刀切削力的几个因素,确定每齿进给量变化是影响切削力的主要因素。以此为基础,介绍了齿轮铣刀的强度有限元分析的方法。利用有限元方法分析齿轮铣刀的刀体强度,验证了铣刀的设计安全性,为铣刀的优化设计提供了参考。  相似文献   

15.
从脆性材料塑性域铣削机理和特点出发,建立了微径球头铣刀几何模型,改进了瞬时切厚模型,利用合理的切削力微元模型建立了脆性材料铣削瞬时的铣削力解析模型;以石英玻璃为工件材料,基于改进的实验平台进行球头铣刀微铣削试验,并获取了铣削力实验数据,回归出了所建模型中的切削力系数。利用试验对模型进行验证分析,结果表明所建模型具有良好的适用性。  相似文献   

16.
李海斌  何宁  李亮 《工具技术》2010,44(12):10-13
在特定铣削条件下,建立了多齿不等距铣刀的切削力模型,并通过正交试验验证所建的切削力模型;通过分析不同的切削参数对切削力系数的影响,综合确定了在小切削宽度铣削过程中合理选用切削参数的基本原则。  相似文献   

17.
Aerospace aluminum alloy is the most used structural material for rockets, aircraft, spacecraft, and space stations. The deterioration of surface integrity of dry machining and the insufficient heat transfer capacity of minimal quantity lubrication have become the bottleneck of lubrication and heat dissipation of aerospace aluminum alloy. However, the excellent thermal conductivity and tribological properties of nanofluids are expected to fill this gap. The traditional milling force models are mainly based on empirical models and finite element simulations, which are insufficient to guide industrial manufacturing. In this study, the milling force of the integral end milling cutter is deduced by force analysis of the milling cutter element and numerical simulation. The instantaneous milling force model of the integral end milling cutter is established under the condition of dry and nanofluid minimal quantity lubrication (NMQL) based on the dual mechanism of the shear effect on the rake face of the milling cutter and the plow cutting effect on the flank surface. A single factor experiment is designed to introduce NMQL and the milling feed factor into the instantaneous milling force coefficient. The average absolute errors in the prediction of milling forces for the NMQL are 13.3%, 2.3%, and 7.6% in the x-, y-, and z-direction, respectively. Compared with the milling forces obtained by dry milling, those by NMQL decrease by 21.4%, 17.7%, and 18.5% in the x-, y-, and z-direction, respectively.  相似文献   

18.
Designing a high-performance solid carbide end mill is difficult due to the complex relationship between end mill geometry and numerous or conflicting design goals. Earlier approaches of computer-aided solid end mill design are limited to only a few design aspects. This article presents a three-dimensional finite element method of milling process for solid carbide end mill design and optimization. The software was secondarily developed based on UG platform, integrating the parametric design with the development of the two-dimension drawing of solid carbide end mill. The three-dimension finite element simulation for milling Ti-6Al-4V alloy was performed and the geometrical parameters were optimized based on the objective of low cutting force and cutting temperature. As a result, a simulation-based design and optimization of geometrical parameters of tool structure and cutting edge is possible. The optimized results, for the geometrical parameters of tool structure and cutting edge when milling titanium alloy using a 20-mm diameter solid carbide end mill, is a 12-mm diameter of inner circle, four flutes, a 45 ° helix angle, and a 9 ° rake angle of the side cutting edge.  相似文献   

19.
郭雪琪  安平  杨武  魏智 《工具技术》2017,51(4):33-37
针对石英玻璃的微铣削过程,采用离散元模拟软件PFC3D建立真实的离散元模型,模拟裂纹的生成与扩展情况,得到铣削力曲线图以及铣削过程的较优加工工艺参数,并通过铣削力试验验证了石英玻璃三维离散元模型有效性及离散元法模拟石英玻璃切削过程的合理性。基于模型和试验一致,得出不同铣削参数下铣削力的变化规律。结果表明:铣削力随主轴转速的增加则先减小后增加再减小,随切削深度和进给速度的增加而增加,随刀具倾角的增加则先增加后减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号