首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanical properties and microstructural evolution of WASPALOY joined by linear friction welding (LFW) were investigated in this study. In-situ temperature measurements using thermocouple probes indicated exposure of the weld area to a temperature of at least 1400 K (1126 °C). Based on electron backscatter diffraction (EBSD) mapping of the weldments, up to 50 pct reduction in γ grain size occurred within 0.9 mm of the weld interface as a result of dynamic recrystallization (DRX). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies revealed that progressive dissolution of γ′ precipitates took place from the base metal to the weld interface, where almost no γ′ precipitates were observed. Within 3.3 mm of the weld interface, the γ′ dissolution significantly influenced the hardness profile measured across the extended thermomechanically affected zones (TMAZs). Investigation of strain distributions during tensile testing using the optical Aramis system revealed weak bonding at the edge of the weld due to oxidation. To extrude out oxide layers into the flash, increasing the axial shortening to higher than 1.2 mm is recommended.  相似文献   

2.
The deformation and damage modes associated with the high strain-rate behavior of a high-strength aluminum alloy Al 2139 were analyzed. The microstructure was characterized at different physical scales to determine how the strengthening and toughening mechanisms of the alloy can inhibit and resist failure modes, such as shear localization and bending tensile failure, which occur due to high strain-rate impact. Grain morphology, precipitates (Ω and θ′), and Mn-bearing dispersed particles and inclusions were characterized by optical microscopy (OM), orientation imaging microscopy (OIM), energy dispersive spectroscopy (EDS), transmission electron microscopy/high-resolution transmission electron microscopy (TEM/HRTEM), selected area diffraction (SAD), and scanning electron microscopy (SEM) investigations of a 38-mm plate impacted by 4340 steel projectiles. Large grain sizes reduce grain boundary (GB) area and allow for more precipitation in the matrix, and these precipitates are shown to play a critical role in the toughening and strengthening of the alloy. Dispersed particles are associated with ductile failure, and inclusions are associated with ductile failure and shear failure. Different deformation modes were observed for the nanoscale precipitates, which affected overall behavior at size scales spanning the nano to the macro.  相似文献   

3.
In the present research, microstructure and mechanical properties of 2205 duplex stainless steel/A517 quench and tempered low alloy steel dissimilar joint were investigated. For this purpose, gas tungsten arc welding was used with ER2209 filler metal. Characterizations were conducted by optical microscopy, scanning electron microscopy equipped with an energy dispersive spectroscopy and X-ray diffraction. Mechanical properties were evaluated in micro-hardness, tensile and impact tests. Microstructure in the weld zone included an austenitic continuous network in the matrix of primary ferrite. No brittle phases were formed in the weld metal and stainless steel heat affected zone (HAZ). The weld metal/A517 interface showed higher hardness than other regions. Tensile tests indicated that the values of the yield and tensile strength were 663 and 796 MPa, respectively. Impact tests indicated that the weld zone had almost the same impact energy as base metals. The minimum impact energy of 12 J was related to A517 HAZ. The results of scanning electron microscopy for fracture surfaces indicated that weld zone, 2205 HAZ and A517 HAZ had ductile, ductile–brittle and brittle fracture mode, respectively.  相似文献   

4.
The objective of this work was to produce an alloy showing a microstructure similar to Ni-base superalloys, but with Pt as base metal. The Pt-base alloys with various contents of Al, Cr, and Ni were arc melted. Solution heat treatments at 1450 °C followed by water quenching lead to single-phase alloys. Ageing at 1000 °C resulted in the precipitation of Ll2 ordered particles. An alloy with 11 at. pct Al, 3 at. pct Cr, 6 at. pct Ni, and Pt balance shows cuboidal precipitates with edge lengths of 200 to 500 nm along with a volume fraction of 23 pct and a lattice misfit of −0.1 pct. Aging at 1100 °C leads to coarsening of precipitates. Volume fraction and morphology of the precipitates were investigated by scanning electron microscopy and optical microscopy. X-ray diffraction as well as transmission electron microscopy (TEM) were applied to verify the crystal structure.  相似文献   

5.
The microstructures of two as-cast heats of HP alloy stainless steels modified with niobium and titanium were examined with particular attention paid to the interdendritic niobium-titanium-rich carbides formed during solidification of these alloys. Generally, these precipitates obtain a blocky morphology in the as-cast condition. However, the (NbTi)C precipitates may obtain a nodular morphology. To provide further insight to the origin of the two different morphologies obtained by the (NbTi)C precipitates in the HP-NbTi alloy, the microstructure and crystallography of each have been studied in detail using scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (EBSD, SAD, and CBED), and energy-dispersive X-ray spectroscopy.  相似文献   

6.
7.
This article is aimed at investigating the difference in precipitation behavior in the fine-grained heat-affected zone (FGHAZ), coarse-grained heat-affected zone (CGHAZ), and base metal for the welded joint of high Cr ferritic heat-resistant steel (11Cr-0.4Mo-2W-1Cu-V-Nb, normalized 1323 K×1 h and tempered 1033 K×1 h). Simulated HAZ (SHAZ) specimens were used, whose thermal cycles were controlled to be the same as those in the actual welded joint with peak temperatures of 1523 and 1173 K to represent CGHAZ and FGHAZ, respectively. Based on scanning electron microscopy (SEM) observation, it looks that the precipitates in FGHAZ specimens (1173 K) were fewer and larger than those in CGHAZ (1523 K) specimens and base metal specimens. This phenomenon implied that the growth and coarsening of precipitates in FGHAZ may play a role in the deterioration of creep properties and type IV cracking, which was observed in previous creep tests. X-ray diffraction analysis for the electrolytic extraction showed that the types of precipitates are the same for the 1173 K specimens and base metal specimens, including M23C6, MX, Laves phase, and μ phase. Further, the elemental analysis of the extraction showed that the mass percentages of Cr, W, and Mo in the precipitates to specimen mass were higher in the FGHAZ specimen than those in the base metal specimen, especially during the period between 600 and 2464 hours. Finally, a two-dimensional (2-D) model was proposed to simulate the precipitation behavior of the Laves phase.  相似文献   

8.
An experimental gas-metal arc (GMA) weldment of HSLA-100 steel fabricated with an ultralowcarbon (ULC) consumable of interest for United States Navy applications, designated “ARC100,” was studied to determine the relationships among the microstructure, the solute redistributions at various positions across the weldment, and the local properties (microhardness). These relationships were investigated by a variety of techniques, including microhardness mapping, optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) (including compositional X-ray mapping), and parallel electron energy-loss spectroscopy (PEELS). The microconstituents observed in this weld include lath ferrite, degenerate ferrite, lath martensite, retained austenite, and oxide inclusions; no carbides or other solid-state precipitates are present within the weld metal. Microhardness mapping indicates an undermatched weld metal (lower hardness as compared to the base plate) in which the hardest regions are in the first and last top beads, the root passes, and between highly ferritic soft bands associated with the outer portion of each weld bead’s heat-affected zone (HAZ) (within the fusion zone). The majority of the gradient in the substitutional alloying elements (Ni, Cu, Mn, and Cr) occurs within a region of less than about 0.5 mm of the fusion boundary, but the composition still changes even well into the fusion zone. Appreciable segregation of Ni and Cu to solidification cell boundaries occurs, and there is appreciable enrichment of C, Ni, Cu, and Mn in thin films of interlath retained austenite. This ULC weld metal is softer than the base plate due to the preponderance of lath ferrite rather than lath martensite, even at the high cooling rates experienced in this low-heat-input weld. Alternatively, the strength of the weld metal is due to the presence of at least some untempered lath martensite and the fact that the majority of the ferrite is lath ferrite and not polygonal ferrite. The interlath retained austenite might enhance toughness, but might also serve as a source of hydrogen in solution, which could potentially contribute to hydrogen-assisted cracking.  相似文献   

9.
The microstructure of investment cast PH 13-8 Mo stainless steel heat-treated to various conditions was studied using light and electron microscopy, electron probe microanalysis, and Mössbauer spectroscopy. The mechanical properties were investigated by using uniaxial tensile testing, hardness testing, and Charpy impact testing. TheΒ-NiAl strengthening precipitates, though detectable by electron diffraction, were difficult to resolve by transmission electron microscopy (TEM) in specimens aged at low temperatures (566 °C and below). A high dislocation density was observed in the lath martensitic structure. The higher strength and lower ductility observed at low aging temperatures was attributed to both the high dislocation density and the precipitation ofΒ-NiAl. When samples were aged at high temperatures (> 566 °C), a lower dislocation density and a reverted austenite fraction on the order of 15 pct were observed. SphericalΒ-NiAl precipitates were observed in the overaged condition. The decrease in strength and corresponding increase in ductility observed in samples aged at temperatures above 566 °C were attributed to the reverted austenite and recovery. Mechanical properties were improved when the homogenizing temperature and time were increased. Electron probe microanalysis quantified the increased homogeneity realized by increasing homogenizing temperature and time. Elimination of the refrigeration step, which normally follows the solution treatment, did not degrade the mechanical properties. Mössbauer spectroscopy showed only minor decreases in the fraction of retained austenite when refrigeration followed the solution treatment.  相似文献   

10.
The objective of this work was to produce an alloy showing a microstructure similar to Ni-base superalloys, but with Pt as base metal. The Pt-base alloys with various contents of Al, Cr, and Ni were are melted. Solution heat treatments at 1450 °C followed by water quenching lead to single-phase alloys. Ageing at 1000 °C resulted in the precipitation of L12 ordered particles. An alloy with 11 at. pct Al, 3 at. pct Cr, 6 at. pct Ni, and Pt balance shows cuboidal precipitates with edge lengths of 200 to 500 nm along with a volume fraction of 23 pct and a lattice misfit of −0.1 pct. Aging at 1100 °C leads to coarsening of precipitates. Volume fraction and morphology of the precipitates were investigated by scanning electron microscopy and optical microscopy. X-ray diffraction as well as transmission electron microscopy (TEM) were applied to verity the crystal structure. M. Huller, formerly with Metallic Materials, University Bayreuth, D-95440 Bayreuth, Germany  相似文献   

11.
The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.  相似文献   

12.
The interface chemical compositions and fine structure of sintered aluminum alloys were studied by the methods of Auger-electron spectroscopy and transmission electron microscopy. The transfer of impurity elements from the surface of powders to grain boundaries in the sintered alloys was experimentally confirmed. Enrichment of grain boundaries in oxygen, sulfur, and calcium causes brittle intergranular fracture, and seems to be the main reason for the lower strength of sintered alloys. Increased strength can be obtained by the elimination of intergranular brittleness, and the formation of dispersed precipitates of second phases in the matrix. Institute, Materials Science Ukrainian Academy of Sciences, Kiev. Translated from Poroshkovaya Metallurgiya, Nos. 3–4(400), pp. 21–25, March–April, 1998.  相似文献   

13.
The local chemistry and structure of α-iron/molybdenum nitride heterophase interfaces is studied on a subnanometer scale by atom-probe field-ion microscopy (APFIM), three-dimensional atom-probe microscopy (3DAPM) and both conventional transmission electron microscopy (CTEM) and highresolution electron microscopy (HREM). Molybdenum nitride precipitates are generated by annealing Fe-2 at. pct Mo-X, where X=0.4 at. pct Sb or 0.5 at. pct Sn, at 550 °C or 600 °C, in an ammonia/hydrogen mixture. Internal nitridation at 550 °C produces thin, coherent platelet-shaped molybdenum nitride precipitates. Nitridation at 600 °C generates a much coarser structure with semicoherent thick plate-shaped and spheroidal precipitates in addition to the thin-platelet structure. The APFIM and 3DAPM analyses of the heterophase interfaces show substantial segregation of the solute species Sn and Sb only at the coarse precipitates, with Gibbsian interfacial excesses of up to 7±3 nm−2, whereas the broad faces of the thin platelets have no detectable segregation. The TEM and HREM analyses show that the coarse precipitates are semicoherent, whereas the thin platelets are either coherent or have much fewer misfit dislocations than geometrically necessary. This demonstrates that Sn and Sb segregation is related to the presence of misfit dislocations at the interfaces of the coarse precipitates. This article is based on a presentation made at the symposium entitled “The Mechanisms of the Massive Transformation,” a part of the Fall 2000 TMS Meeting held October 16–19, 2000, in St. Louis, Missouri, under the auspices of the ASM Phase Transformations Committee.  相似文献   

14.
金属中相邻原子间交替施受互换价电子是金属键合的基本模式[1].作者据此研究金属、半导体、绝缘体中的施受交换电子结构,并进而探讨这种结构与上述材料导电特性的关系.  相似文献   

15.
The microstructure and mechanical properties of dissimilar joints of AISI 316L austenitic stainless steel and API X70 high-strength low-alloy steel were investigated.For this purpose,gas tungsten arc welding(GTAW)was used in three different heat inputs,including 0.73,0.84,and 0.97 kJ/mm.The microstructural investigations of different zones including base metals,weld metal,heat-affected zones and interfaces were performed by optical microscopy and scanning electron microscopy.The mechanical properties were measured by microhardness,tensile and impact tests.It was found that with increasing heat input,the dendrite size and inter-dendritic spacing in the weld metal increased.Also,the amount of delta ferrite in the weld metal was reduced.Therefore,tensile strength and hardness were reduced and impact test energy was increased.The investigation of the interface between AISI 316L base metal and ER316L filler metal showed that increasing the heat input increases the size of austenite grains in the fusion boundary.A transition region was formed at the interface between API X70 steel and filler metals.  相似文献   

16.
17.
A multiwall carbon nanotube (MWCNT)-reinforced aluminum matrix composite was fabricated by ultrasonic metal welding. The composite microstructure was investigated using a scanning electron microscope, transmission electron microscopy, energy-dispersive X-ray spectrum, and X-ray diffraction. The mechanical properties and microhardness of the composite were measured. The nanotubes were confirmed to be embedded into the metal matrix while maintaining their multiwalled structure. Measurements revealed that the mechanical properties and microhardness were obviously enhanced, the welded interface remained smooth, and no reactant was produced.  相似文献   

18.
研究了H13钢在电渣锭退火、锻后退火和淬回火三种状态下的析出物特征.利用碳膜萃取复型,通过透射电镜、电子衍射和能谱分析发现方形、圆形及尺寸在200 nm以下的不规则碳化析出物,并确定它们分别为V8C7、Cr23C6和Cr3C2(Cr2VC2).研究了这些析出物的演变规律,并对其在液相区、固-液两相区和固相区的析出规律进行了热力学计算.根据热力学计算及电子衍射标定结果发现,Cr23C6和V8C7在液相区及固-液两相区均不能析出,当冷却到固相区时它们才开始析出.   相似文献   

19.
An interface consisting of an antiphase boundary (APB) and a short-range-ordering interphase layer (∼4 nm) in the elongated γ′ precipitate for a chosen model alloy was examined. Interface image simulations, high-resolution electron microscopy (HREM), and scanning transmission electron microscopy (STEM) techniques were employed to show interfacial segregation at an APB and to identify the local composition changes across it. Emphasis is also given to understanding the influence of the APB on the microstructural evolution in the rafting mechanism. In contrast to the widely accepted notion that out-of-phase precipitates never coalesce to form a single particle, results of this study indicate that complete coalescence of γ′ precipitates during annealing may occur at high temperatures as a result of the glide and climb of a 1/2 <110> superpartial dislocation in the thin interphase layer, despite the presence of an APB between the merging γ′ particles.  相似文献   

20.
Submerged arc welding(SAW)and gas metal arc welding(GMAW)experiments of Nb-bearing X80 steel were conducted with high-toughness wires.The inclusions in weld metals were analyzed in terms of their types and sizes.In GMAW,the inclusions are primarily Ti,Ca,Si,Al,and Mg compounds with no Nb and are generally less than 0.8 pm in size,whereas,in SAW weld,the inclusions are larger,mostly approximately 2-5 μm in size,and are cored with Ca and Ti,exhibiting obvious oxidation metallurgical features.The SAW joint was hot-deformed,and Nb-bearing nano precipitates were newly found in the weld metal through transmission electron microscopy,and Nb-free core-shell inclusion was found through scanning electron microscopy.The inclusions and precipitates were dispersed in or on the boundaries of acicular ferrite,contributing to acicular ferrite nucleation and grain refinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号