首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Results are presented showing the ability to obtain C-terminal sequence information from peptides by multiple stages of mass spectrometry. Under typical low-energy collision-induced dissociation conditions of quadrupole ion trap and ion cyclotron resonance mass spectrometers, lithium- and sodium-cationized peptides dissociate predominantly by reaction at the C-terminal peptide bond or an adjacent bond. For the majority of cases studied, the dominant reaction is a rearrangement process that results in the loss of the C-terminal residue and formation of a product ion that is one amino acid shorter than the original peptide ion. Using the multistage MS/MS capabilities of quadrupole ion trap and ion cyclotron resonance mass spectrometers, a subsequent stage of MS/MS can be performed to determine the identity of the new C-terminal residue. Up to eight stage of MS/MS have been performed with both quadrupole ion trap and ion cyclotron resonance mass spectrometers. In general, the same dissociation pathways are observed with both instruments, although occasionally there are significant differences in the branching ratios of competing pathways.  相似文献   

2.
Electrospray ionization coupled to a quadrupole ion trap mass spectrometer is used to differentiate between the isobaric amino acids lysine and glutamine in sequence analysis of peptides. Collision-induced dissociation is used for fragmentation. Several isobaric peptides with one or more lysines or glutamines at different positions were investigated. The ambiguous amino acid either in the peptide chain or at the C- or N-terminus can be clearly identified based on specific side chain fragment ions resulting from MS3 or MS4 of B- and Y"-fragment ions.  相似文献   

3.
During the analysis of an Asp-N digest of a recombinant hematopoietic growth factor by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), we observed pseudomolecular ions corresponding to reduced forms of peptides known to be present only in single disulfide linkages. Chromatographic fractionation of the peptide digest, followed by MALDI-MS and electrospray ionization (ESI) MS, confirmed that the reduced peptides were not present in the map. Fragmentation of the disulfide-linked peptides into their reduced forms occurred upon ionization from different matrices (alpha-cyano-4-hydroxycinnamic acid,2,5-dihydroxybenzoic acid, and in some instances sinapinic acid) but only after increasing the laser fluence to above threshold. Analysis of the disulfide-linked peptide fractions by ESI-MS, before and after mixing and drying with matrix, indicated that the matrix did not cause reduction. In a low-energy tandem mass spectrometric experiment with one of the cystinyl peptides, fragmentation did not occur preferentially at the disulfide bond. The pseudomolecular ions exhibited the same m/z values by MALDI-MS as their chemically reduced counterparts, indicating that they arose due to prompt fragmentation or "in-source decay" rather than "post-source decay". This finding is important for MALDI-MS analysis of peptide maps of proteins and peptide fractions with intact disulfides.  相似文献   

4.
De novo peptide sequencing in an ion trap mass spectrometer coupled on-line with a capillary HPLC using 18O labeling provides a viable alternative to the method using the combination of nanospray, 18O labeling and a quadrupole/time-of-flight mass spectrometer. Seven to sixteen amino acid residues can be sequenced from the liquid chromatography/randem mass spectrometry (LC/MS/MS) spectra. This approach combines the benefit of capillary LC and the high sensitivity of the ion trap operated in the MS/MS mode. The wide availability of the LCQ mass spectrometer makes this approach readily adaptable to the biological mass spectrometry community.  相似文献   

5.
Electrospray ionization-ion trap mass spectrometry, with its capacity to perform multiple stages of fragmentation (MSn), is demonstrated as an effective method for the structural characterization of permethylated N-linked complex glycoprotein oligosaccharides. Complex glycan structural features, such as N-acetyllactosamine antenane, neuraminic acids, and nonreducing terminal GlcNAc monosaccharides, commonly suppress cross-ring and core saccharide cleavages in traditional MS/MS experiments. Using ion trap mass spectrometry, removal of these substituents permits determination of branching patterns and intersaccharide linkages by MS3 and MS4. Both sequence and linkage data are obtained for N-acetyllactosamine and sialyl-N-acetyllactosamine oligosaccharide antennae from biantennary glycans using MS3, and the location of a bisecting GlcNAc residue is also established after exposing the core pentasaccharide. Higher-order experiments further illustrate the potential of electrospray ionization-quadrupole ion trap mass spectrometry for carbohydrate analysis, as MS8 is used to produce significant and otherwise unobtainable branching information for an oligosaccharide from chicken ovalbumin. These studies constitute further evidence of the unique role that ion trap mass spectrometry can assume in the area of oligosaccharide analysis.  相似文献   

6.
A method for the identification of proteins by their amino acid sequence at the low-femtomole to subfemtomole sensitivity level is described. It is based on an integrated system consisting of a capillary zone electrophoresis (CZE) instrument coupled to an electrospray ionization triple- quadrupole tandem mass spectrometer (ESI-MS/MS) via a microspray interface. The method consists of proteolytic fragmentation of a protein, peptide separation by CZE, analysis of separated peptides by ESI-MS/MS, and identification of the protein by correlation of the collision-induced dissociation (CID) patterns of selected peptides with the CID patterns predicted from all the isobaric peptides in a sequence database. Using standard peptides applied to a 20-microns-i.d. capillary, we demonstrate an ESI-MS limit of detection of less than 300 amol and CID spectra suitable for searching sequence databases obtained with 600 amol of sample applied to the capillary. Successful protein identification by the method was demonstrated by applying 50 and 38 fmol of a tryptic digest of the proteins beta-lactoglobulin and bovine serum albumin, respectively, to the system.  相似文献   

7.
We have developed an algorithm (MassDynSearch) for identifying proteins using a combination of peptide masses with small associated sequences (tags). Unlike the approach developed by Matthias Mann, 'Tag searching', in which the sequence tags are generated by gas phase fragmentation of peptides in a mass spectrometer, 'Rag Tag' searching uses peptide tags which are generated enzymatically or chemically. The protein is digested either chemically or with an endopeptidase and the resultant mixture is then subjected to partial exopeptidase degradation. The mixture is analyzed by matrix assisted laser desorption and ionization time of flight mass spectrometry and a list of intact peptide masses is generated, each associated with a set of degradation product masses which serve as unique tags. These 'tagged masses' are used as the input to an algorithm we have written, MassDynSearch, which searches protein and DNA databases for proteins which contain similar tagged motifs. The method is simple, rapid and can be fully automated. The main advantage of this approach is that the specificity of the initial digestion is unimportant since multiple peptides with tags are used to search the database. This is especially useful for proteins like membrane, cytoskeletal, and other proteins where specific endopeptidases are less efficient and lower specificity proteases such as chymotrypsin, pepsin, and elastase must be used.  相似文献   

8.
Complete and rapid peptide and glycopeptide mapping of a mouse monoclonal immunoglobulin (IgG2b) were carried out by liquid chromatography/electrospray ionization ion trap-mass spectrometry/mass spectrometry (LC/ ESI IT-MS/MS). It was possible to obtain spectra of a minor glycopeptide at a quantity as low as 1.8 pmol. Reduced and carboxymethylated mouse antidansyl monoclonal IgG2b (RCM-IgG2b) was digested with lysyl-endopeptidase. Proteolytic peptides were subjected to capillary HPLC separation followed by analysis with an ion trap mass spectrometer. The complete amino acid sequence of the IgG2b was characterized by using LC/ ESI IT-MS/MS. The structures of 12 different types of O-linked oligosaccharides attached to Thr-221AH in the hinge region and those of three major types of N-linked oligosaccharides attached to Asn-297H have been characterized.  相似文献   

9.
Iron plays a critical role in the pathophysiology of Mycobacterium tuberculosis. To gain a better understanding of iron regulation by this organism, we have used two-dimensional (2-D) gel electrophoresis, mass spectrometry, and database searching to study protein expression in M. tuberculosis under conditions of high and low iron concentration. Proteins in cellular extracts from M. tuberculosis Erdman strain grown under low-iron (1 microM) and high-iron (70 microM) conditions were separated by 2-D polyacrylamide gel electrophoresis, which allowed high-resolution separation of several hundred proteins, as visualized by Coomassie staining. The expression of at least 15 proteins was induced, and the expression of at least 12 proteins was decreased under low-iron conditions. In-gel trypsin digestion was performed on these differentially expressed proteins, and the digestion mixtures were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry to determine the molecular masses of the resulting tryptic peptides. Partial sequence data on some of the peptides were obtained by using after source decay and/or collision-induced dissociation. The fragmentation data were used to search computerized peptide mass and protein sequence databases for known proteins. Ten iron-regulated proteins were identified, including Fur and aconitase proteins, both of which are known to be regulated by iron in other bacterial systems. Our study shows that, where large protein sequence databases are available from genomic studies, the combined use of 2-D gel electrophoresis, mass spectrometry, and database searching to analyze proteins expressed under defined environmental conditions is a powerful tool for identifying expressed proteins and their physiologic relevance.  相似文献   

10.
Biopolymer sequencing with mass spectrometry has become increasingly important and accessible with the development of matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). Here we examine the use of sequential digestion for the rapid identification of proteolytic fragments, in turn highlighting the general utility of enzymatic MALDI ladder sequencing and ESI tandem mass spectrometry. Analyses were performed on oligonucleotides ranging in size from 2 to 50 residues, on peptides ranging in size from 7 to 44 residues and on viral coat proteins. MALDI ladder sequencing using exonuclease digestion generated a uniform distribution of ions and provided complete sequence information on the oligonucleotides 2-30 nucleic acid residues long. Only partial sequence information was obtained on the longer oligonucleotides. C-terminal peptide ladder sequencing typically provided information from 4 to 7 amino acids into the peptide. Sequential digestion, or endoprotease followed by exoprotease exposure, was also successfully applied to a trypsin digest of viral proteins. Analysis of ladder sequenced peptides by LCMS generated less information than in the MALDI-MS analysis and ESI-MS2 normally provided partial sequence information on both the small oligonucleotides and peptides. In general, MALDI ladder sequencing offered information on a broader mass range of biopolymers than ESI-MS2 and was relatively straightforward to interpret, especially for oligonucleotides.  相似文献   

11.
We report the development of a method to compare collision-induced dissociation (CID) spectra of peptides. This method employs a cross-correlation analysis of a CID spectrum to a reference spectrum and normalizes the cross-correlation score to the autocorrelation of the CID spectra. The query spectrum is compared by using both mass information and fragmentation patterns. Fragmentation patterns are compared to each other using a correlation function. To evaluate the specificity of the approach, a set of 2180 tandem mass spectra obtained from both triple-quadrupole tandem mass spectrometers (TSQ) and quadrupole ion trap mass spectrometers (LCQ) was created. Comparisons are performed between tandem mass spectra obtained on the same instrument type as well as between different instrument types. Accurate and reliable comparisons are demonstrated in both types of analyses. The scores obtained in the cross-comparison of TSQ and LCQ tandem mass spectra of the same peptide are found to be slightly lower than comparisons performed with spectra obtained on the same instrument type. The method appears insensitive to variations in day-to-day performance of the instrument, minor variations in fragment ion abundance, and instrumental differences inherent in the same instrument model. The use of this method of comparison is demonstrated for library searching and subtractive analysis of tandem mass spectra obtained during LC/MS/MS experiments.  相似文献   

12.
The sequential tandem mass spectrometry (MSn) capabilities offered by quadrupole ion trap instruments have been explored in a systematic study of permethylated oligosaccharides. Under collision-induced dissociation, protonated molecular species generated in the electrospray ionization mode yield simple and predictable mass spectra. Information on sequence, branching, and, to some extent, interglycosidic linkages can be deduced from fragments resulting from the cleavage of glycosidic bonds. Simple rules for the structural assignment of carbohydrates have been established for the fragmentation of protonated species and subunits thereof and corroborated by 18O-labeling experiments. Moreover, sequential tandem mass spectrometry was demonstrated to allow the straightforward structural characterization of unknown carbohydrate moieties by comparing their CID spectra with those of a set of references. As the collision-induced dissociation patterns are not dependent on the number of prior tandem mass spectrometric steps, structures can be unambiguously assigned by match of the spectra. These findings establish the basis of MSn performed on a quadrupole ion trap instrument for elucidating structures of large carbohydrates, which can be virtually degraded in the mass spectrometer into smaller entities in one or several steps. This powerful technique has been applied, used in conjunction with specific CD3 labeling, to the characterization of series of subunits generated from fucosylated and sialylated oligosaccharides, which are among the most important structures as far as biological activities are concerned.  相似文献   

13.
Five synthetic opioid peptides that were designed to have specific opioid receptor-binding properties were studied by low energy collision-induced dissociation (CID) tandem mass spectrometry (MS/MS). The MS/MS data are required for the analysis of those peptides in ovine plasma in a study to determine the placental transfer of the peptide to the fetus. The synthetic enkephalin-related peptides were: Tyr-D-Arg-Phe-Lys-NH2, (DALDA), N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH, (ICI 174,864), Tyr-D-Thr-Gly-Phe-Leu-Thr, (DTLET), Tyr-D-Pen-Gly-Phe-D-Pen-OH, (DPDPE), and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2, (CTAP). Liquid secondary ion mass spectrometry (LSIMS) was used for sample desorption-ionization, and a hybrid (E1BE2qQ) tandem mass spectrometer was used to collect the product-ion spectra. A protonated molecule ion, [M + H]+, was observed for each peptide. Amino acid sequence-determining fragment ion were produced by CID and collected by MS/MS for the three linear peptides, and also for the two disulfide-bond-containing peptides in their unreduced and dithiothreitol (DTT)-reduced forms. The detection level for the [M + H]+ ion of DTLET was ca. 3 pmol; and the stabilities of the CTAP and ICI analogs in plasma were studied.  相似文献   

14.
A systematic study of the fragmentation pattern of phosphopeptides in an electrospray (ESI) ion trap mass spectrometer is presented. We show that phosphotyrosine- and phosphothreonine-containing peptides show complicated fragmentation patterns. These phosphopeptides were observed to lose the phosphate moiety in the form of H3PO4 and/or HPO3, but were also detected with no loss of the phosphate group. The tendency to lose the phosphate moiety depends strongly on the charge state. Thus, the highest observed charge state tends to retain the phosphate moiety with extensive fragmentation along the peptide backbone. We also show that phosphoserine-containing peptides have relatively simple fragmentation patterns of losing H3PO4. This loss is independent of the charge state. We suggest strategies for the accurate identification of phosphorylation sites using the ion trap mass spectrometer.  相似文献   

15.
We report a study of the application of delayed extraction (DE) to infrared-wavelength matrix-assisted time-of-flight mass spectrometry (IR-MALDI-TOF-MS) of proteins. The shapes of the spectral peaks obtained with DE-IR-MALDI-MS are compared with those obtained from the same samples and matrix using continuous extraction (CE) IR-MALDI-MS. Application of DE results in significant improvements in the peak resolution, revealing spectral features (in proteins with molecular masses < 12 kDa) that were not resolved in the corresponding CE-IR-Maldi mass spectra. Particularly significant is a series of peaks on the high mass side of the protonated protein peaks that arise through replacement of protons by adventitious sodium ions in the sample. We deduced that these sodium replacement species are a significant contributor to the broad tails (and resulting peak asymmetries) that are a feature of the DE-IR-MALDI mass spectra of proteins with molecular masses > or = 17 kDa. The peak width reduction observed in IR-MALDI by DE suggests that, as in UV-MALDI, the initial velocity distribution for ions produced in the MALDI process contributes to the peak broadness in the CE mass spectra. In a systematic comparison between DE UV-MALDI and DE IR-MALDI, we determined that photochemical matrix adduction is present in UV-MALDI but absent in IR-MALDI. In addition, we find that protein ions produced by IR irradiation are less internally excited (i.e., cooler), exhibiting less fragmentation, more Na+ replacement and/or unspecified noncovalent adduction, and more heme adduction with apomyoglobin. Thus, IR-MALDI appears to be a softer means for producing gas-phase protein ions than is UV-MALDI. It will be of considerable practical interest to determine whether large protein ions produced by IR-MALDI are sufficiently cool to survive transport through reflecting TOF mass spectrometers (without loss of small neutral species such as H2O, NH3, and CO2) and the extended time periods required for detection by quadrupole ion trap and Fourier transform ion cyclotron resonance mass analyzers.  相似文献   

16.
This review offers an introduction to the principles and generic applications of FT-ICR mass spectrometry, directed to readers with no prior experience with the technique. We are able to explain the fundamental FT-ICR phenomena from a simplified theoretical treatment of ion behavior in idealized magnetic and electric fields. The effects of trapping voltage, trap size and shape, and other nonidealities are manifested mainly as perturbations that preserve the idealized ion behavior modified by appropriate numerical correction factors. Topics include: effect of ion mass, charge, magnetic field, and trapping voltage on ion cyclotron frequency; excitation and detection of ICR signals; mass calibration; mass resolving power and mass accuracy; upper mass limit(s); dynamic range; detection limit, strategies for mass and energy selection for MSn; ion axialization, cooling, and remeasurement; and means for guiding externally formed ions into the ion trap. The relation of FT-ICR MS to other types of Fourier transform spectroscopy and to the Paul (quadrupole) ion trap is described. The article concludes with selected applications, an appendix listing accurate fundamental constants needed for ultrahigh-precision analysis, and an annotated list of selected reviews and primary source publications that describe in further detail various FT-ICR MS techniques and applications.  相似文献   

17.
Matrix-assisted laser desorption/ionization (MALDI) ion trap mass spectrometry is shown to be a powerful tool for the elucidation of protein modifications. Low-energy covalent bonds that originate from certain posttranslational modifications dissociate preferentially to produce characteristic mass spectrometric signatures that prove useful for the accurate, confident identification and characterization of such modifications. Because the MALDI ion trap is an authentic tandem mass spectrometer, it proves feasible to acquire secondary information to test hypotheses as to the nature and site of the putative modifications--further increasing the reliability of the tool. The method combines the advantageous features of MALDI (i.e., the ability to measure the same sample repeatedly, to measure unfractionated complex mixtures without the need for sample cleaning, and to determine peptide mixtures with subpicomole sensitivity) with the ease and the speed of the ion trap measurement. We demonstrate how the unique properties of MALDI ion trap MS can be used to address problems involving the determination of both native posttranslational modifications of proteins (e.g., disulfide mapping, glycosylation determination, and phosphorylation determination) and non-native chemical modifications of proteins (e.g., methionine oxidation and photo-cross-linking of proteins with DNA).  相似文献   

18.
A new MALDI probe has been designed that uses transmission geometry. This geometry allows the probe to be fashioned after typical EI/CI solid probes which enables it to be introduced into spatially constrained ion source regions such as encountered in quadrupole ion trap mass spectrometers. In the probe design demonstrated here, light from a fiber optic irradiates the backside of a sample through a small piece of quartz on which the sample has been directly deposited. The performance characteristics exhibited by utilizing this probe for MALDI on a quadrupole ion trap mass spectrometer are similar to those which can be obtained through the traditional methods of implementing MALDI. Spectra have been obtained from 50 fmol of total loading of bombesin, MS/MS has been performed on 5 pmol of des-Arg9-bradykinin, and the analyte ion signal is shown to last for over 2500 laser shots for 2 pmol of bombesin. Optical micrographs showing the crystal distribution of a sample containing 2 pmol of bombesin have been obtained as a function of the number of laser shots for a single sample loading. Although this probe was designed for use with the quadrupole ion trap, it can be adapted for use with all types of mass spectrometers. Thus, with only one laser, one fiber optic, and this probe, MALDI can be performed on multiple instruments in a lab.  相似文献   

19.
An ion trap/ion mobility/time-of-flight mass spectrometry technique is shown to be a rapid and sensitive means of analyzing peptide/protein mixtures. In this approach, an ion trap is used to accumulate ions that have been electrosprayed from a mixture into concentrated packets. The ion packets are injected into a drift tube where components of the mixture are separated based on differences in mobility through a buffer gas. Ions that exit the drift tube are dispersed in a time-of-flight mass spectrometer for mass-to-charge (m/z) determination. The gas-phase separation strategy reduces congestion in the mass spectrum, and experimental mobilities complement m/z measurements in assigning peaks. Examples of the application of the approach to identification of peptides (from tryptic digests) and to separation of charge-state distributions from electrospray of a mixture containing ubiquitin and myoglobin are presented. Most peptides that are observed from tryptic digests of proteins such as cytochrome c and myoglobin can be identified from data that are acquired in under 1 min; studies of mixtures with known compositions indicate that detection limits are approximately 0.5-3 pmol for individual components. Factors that may influence the distributions that are observed, such as storage time in the trap, injection voltages used for the mobility experiment, and variations in ion cross section with charge state, are discussed.  相似文献   

20.
We here describe the use of added reversed-phase chromatographic beads to concentrate peptides from highly diluted solutions. In the procedure developed, peptide-bead suspensions are dried under vacuum to complete dryness; peptides are subsequently eluted in a small volume of matrix-assisted laser desorption/ionization (MALDI)-matrix containing organic/aqueous solvent and transferred to a MALDI-target for mass analysis. We show that by using this bead-peptide concentration procedure, low femtomole amounts of peptides are efficiently concentrated, up to 1000 times, to volumes smaller than 0.7 microL. We have used this concentration procedure in combination with MALDI-post-source decay analysis to identify subpicomole amounts of proteins present in polyacrylamide gels. Furthermore, we show that the bead-peptide concentration method can be elegantly used to clean up samples contaminated with high concentrations of substances normally deleterious to MALDI-mass spectrometry (MS) experiments. We have found additionally that the bead-peptide concentration procedure can be successfully used to store low femtomole amounts of peptide for prolonged periods of time without severe losses of peptide material. This bead-peptide concentration procedure therefore seems to be a simple and convenient step in the MALDI-MS sample preparation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号