首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High throughput and fair resource sharing are two of the most important objectives in designing a medium access control (MAC) protocol. Currently, most MAC protocols including IEEE 802.11 DCF adopt a random access based approach in a distributed manner in order to coordinate the wireless channel accesses among competing stations. In this paper, we first identify that a random access?Cbased MAC protocol may suffer from MAC protocol overhead such as a random backoff for data transmission and a collision among simultaneously transmitting stations. Then, we propose a new MAC protocol, called sequential coordination function (SCF), which coordinates every station to send a data frame sequentially one after another in a distributed manner. By defining a service period and a joining period, the SCF eliminates unnecessary contentions during the service period, and by explicitly determining the sequence of frame transmission for each stations, it reduces collision occurrences and ensures fairness among stations in the service period. The performance of SCF is investigated through intensive simulations, which show that the SCF achieves higher throughput and fairness performances than other existing MAC protocols in a wide range of the traffic load and the number of stations.  相似文献   

2.
The IEEE 802.11 MAC adopted a collision avoidance mechanism in which contending stations should wait a random backoff time before sending a frame. While the algorithm reduces the collision probability in general, a large number of stations may still experience heavy collisions thus decrease the throughput. In this paper, we propose a simple reservation scheme for enhancing the performance of multiple access in 802.11 MAC: when a transmitter sends a frame, if it has another frame to send in its output queue, it may reserve an additional time that is needed to send the next frame and receive an ACK for the frame. Thus a sender can occupy the medium for two data frames, while reducing the collision probability and improving channel utilization via the reservation. We develop a mathematical model to analyze the performance of proposed scheme, and perform simulations to evaluate its performance compared with the original MAC.  相似文献   

3.
According to the amendment 5 of the IEEE 802.11 standard, 802.11n still uses the distributed coordination function (DCF) access method as mandatory function in access points and wireless stations (essentially to assure compatibility with previous 802.11 versions). This article provides an accurate two dimensional Markov chain model to investigate the throughput performance of IEEE 802.11n networks when frame aggregation and block acknowledgements (Block-ACK) schemes are adopted. Our proposed model considered packet loss either from collisions or channel errors. Further, it took anomalous slots and the freezing of backoff counter into account. The contribution of this work was the analysis of the DCF performance under error-prone channels considering both 802.11n MAC schemes and the anomalous slot in the backoff process. To validate the accuracy of our proposed model, we compared its mathematical simulation results with those obtained using the 802.11n DCF in the network simulator (NS-2) and with other analytical models investigating the performance of 802.11n DCF. Simulation results proved the accuracy of our model.  相似文献   

4.
Performance analysis of the IEEE 802.11 distributed coordinationfunction   总被引:1,自引:0,他引:1  
The IEEE has standardized the 802.11 protocol for wireless local area networks. The primary medium access control (MAC) technique of 802.11 is called the distributed coordination function (DCF). The DCF is a carrier sense multiple access with collision avoidance (CSMA/CA) scheme with binary slotted exponential backoff. This paper provides a simple, but nevertheless extremely accurate, analytical model to compute the 802.11 DCF throughput, in the assumption of finite number of terminals and ideal channel conditions. The proposed analysis applies to both the packet transmission schemes employed by DCF, namely, the basic access and the RTS/CTS access mechanisms. In addition, it also applies to a combination of the two schemes, in which packets longer than a given threshold are transmitted according to the RTS/CTS mechanism. By means of the proposed model, we provide an extensive throughput performance evaluation of both access mechanisms of the 802.11 protocol  相似文献   

5.
The distributed coordination function (DCF) of IEEE 802.11 standard adopts the binary exponential backoff (BEB) for collision avoidance. In DCF, the contention window is reset to an initial value, i.e., CWmin, after each successful transmission. Much research has shown that this dramatic change of window size may degrade the network performance. Therefore, backoff algorithms, such as gentle DCF (GDCF), multiplicative increase–linear decrease (MILD), exponential increase–exponential decrease (EIED), etc., have been proposed that try to keep the memory of congestion level by not resetting the contention window after each successful transmission. This paper proposes a multichain backoff (MCB) algorithm, which allows stations to adapt to different congestion levels by using more than one backoff chain together with collision events caused by stations themselves as well as other stations as indications for choosing the next backoff chain. The performance of MCB is analyzed and compared with those of 802.11 DCF, GDCF, MILD, and EIED backoff algorithms. Simulation results show that, with multiple backoff chains and collision events as reference for chain transition, MCB can offer a higher throughput while still maintaining fair channel access than the existing backoff algorithms.  相似文献   

6.
In IEEE 802.11 based WLAN standard, distributed coordination function is the fundamental medium access control (MAC) technique. It employs a CSMA/CA with random binary exponential backoff algorithm and provides contention-based distributed channel access for stations to share the wireless medium. However, performance of this mechanism drops dramatically due to random structure of the backoff process, high collision probability and frame errors. That is why development of an efficient MAC protocol, providing both high throughput for data traffic and quality of service (QoS) support for real-time applications, has become a major focus in WLAN research. In this paper, we propose an adaptive beacon-based collision-free MAC adaptation. The proposed scheme makes use of beacon frames sent periodically by access point, lets stations enter the collision-free state and reduces the number of idle slots regardless of the number of stations and their traffic load (saturated or unsaturated) on the medium. Simulation results indicate that the proposed scheme dramatically enhances the overall throughput and supports QoS by reducing the delay, delay variation and dropping probability of frames.  相似文献   

7.
Distributed coordination function (DCF) is the basis protocol for IEEE 802.11 standard wireless local area networks. It is based on carrier sense multiple access with collision avoidance (CSMA/CA) mechanism. DCF uses backoff process to avoid collisions on the wireless channel. The main drawback with this process is that packets have to spend time in the backoff process which is an additional overhead in their transmission time. The channel is rendered idle when all the stations defer their transmissions due to their backoff process. Therefore, the channel utilization and the total throughput on the channel can be improved by reducing the average time spent by the packets in the backoff process. In this paper, we propose a new media access coordination function called proposed media access protocol (PMAP) that will improve the channel utilization for successful packet transmission and therefore, the total achievable throughput. In addition, we propose an analytical model for PMAP under saturated conditions. We use this model to analyze the performance of PMAP under saturated conditions. To substantiate the effectiveness of our model, we have verified the model by simulating PMAP in NS‐2. Simulation and analytical results show that under saturated conditions, PMAP shows profound improvement in the throughput performance compared to DCF. In addition, the throughput performance of PMAP under unsaturated conditions is presented. We have also presented the delay performance of PMAP and DCF through simulation in both saturated and unsaturated conditions. Simulation results show that the average delay experienced by the packets is less in PMAP compared to DCF. Further, the variance in the packet delay is same for both PMAP and DCF protocols under unsaturated conditions. From the performance results obtained for PMAP under both saturated and unsaturated conditions, it can be concluded that PMAP is superior in performance compared to DCF. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The medium access control protocol determines system throughput in wireless mobile ad hoc networks following the ieee 802.11 standard. Under this standard, asynchronous data transmissions have a defined distributed coordination function that allows stations to contend for channel usage in a distributed manner via the carrier sensing multiple access with collision avoidance protocol. In distributed coordination function, a slotted binary exponential backoff (BEB) algorithm resolves collisions of packets transmitted simultaneously by different stations. The BEB algorithm prevents packet collisions during simultaneous access by randomizing moments at stations attempting to access the wireless channels. However, this randomization does not eliminate packet collisions entirely, leading to reduced system throughput and increased packet delay and drop. In addition, the BEB algorithm results in unfair channel access among stations. In this paper, we propose an enhanced binary exponential backoff algorithm to improve channel access fairness by adjusting the manner of increasing or decreasing the contention window based on the number of the successfully sent frames. We propose several configurations and use the NS2 simulator to analyze network performance. The enhanced binary exponential backoff algorithm improves channel access fairness, significantly increases network throughput capacity, and reduces packet delay and drop. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
IEEE 802.11 wireless local area networks (WLANs) have reached an important stage and become a common technology for wireless access due to its low cost, ease of deployment, and mobility support. In parallel with the extensive growth of WLANs, the development of an efficient medium access control protocol that provides both high throughput performance for data traffic and quality of service support for real‐time applications has become a major focus in WLAN research. The IEEE 802.11 Distributed Coordination Functions (DCF/EDCA) provide contention‐based distributed channel access mechanisms for stations to share the wireless medium. However, performance of these mechanisms may drop dramatically because of high collision probabilities as the number of active stations increases. In this paper, we propose an adaptive collision‐free MAC adaptation. The proposed scheme prevents collisions and allows stations to enter the collision‐free state regardless of the traffic load (saturated or unsaturated) and the number of stations on the medium. Simulation results show that the proposed scheme dramatically enhances the overall throughput and supports quality of service for real‐time services over 802.11‐based WLANs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
新的改进IEEE 802.11 DCF性能的退避机制   总被引:1,自引:1,他引:0  
李喆  曹秀英 《通信技术》2010,43(8):46-47,50
分布式协调功能DCF是IEEE802.11标准最基本的媒体接入方法,它的核心是载波检测多址接入/冲突避免(CSMA/CA)机制,通过退避算法,减少碰撞的概率。提出了一种新的退避机制改进IEEE802.11DCF饱和吞吐量性能,建立了三维马尔可夫链网络模型详细研究分析,同时利用NS2对所提出的机制进行仿真,比较了改进后的802.11DCF饱和吞吐量与原802.11DCF的饱和吞吐量的大小,仿真结果证明了算法的准确有效。  相似文献   

11.
Wireless local area networks (WLANs) are extremely popular being almost everywhere including business, office and home deployments. The IEEE 802.11 protocol is the dominating standard for WLANs. The essential medium access control (MAC) mechanism of 802.11 is called distributed co‐ordination function (DCF). This paper provides a simple and accurate analysis using Markov chain modelling to compute IEEE 802.11 DCF performance, in the absence of hidden stations and transmission errors. This mathematical analysis calculates in addition to the throughput efficiency, the average packet delay, the packet drop probability and the average time to drop a packet for both basic access and RTS/CTS medium access schemes. The derived analysis, which takes into account packet retry limits, is validated by comparison with OPNET simulation results. We demonstrate that a Markov chain model presented in the literature, which also calculates throughput and packet delay by introducing an additional transition state to the Markov chain model, does not appear to model IEEE 802.11 correctly, leading to ambiguous conclusions for its performance. We also carry out an extensive and detailed study on the influence on performance of the initial contention window size (CW), maximum CW size and data rate. Performance results are presented to identify the dependence on the backoff procedure parameters and to give insights on the issues affecting IEEE 802.11 DCF performance. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we propose an effective medium access mechanism to enhance performance of the IEEE 802.11 distributed coordination function (DCF). One of the primary issues of 802.11 is a contention-based medium access control (MAC) mechanism over a limited medium, which is shared by many mobile users. In the original 802.11 DCF, the binary exponential backoff algorithm with specific contention window size is employed to coordinate the competition for shared channel. Instead of binary exponential increase, we adopt linear increase for the contention window that is determined according to the competing number of nodes. We also assume that the access point can broadcast the number of mobile nodes to each station through management frames. An analytical model is developed for the throughput performance of the wireless medium. Using simulation results from the NS2 simulator, we show that our model can accurately predict the system saturation throughput, and can obtain better performance in terms of throughput, fairness, and packet drop.  相似文献   

13.
IEEE 802.11协议中分布式协调机制的性能模型   总被引:3,自引:1,他引:3       下载免费PDF全文
陈弘原  李衍达 《电子学报》2005,33(1):138-141
IEEE 802.11采用异步传输方式作为媒体层的主要技术,而基于载波检测碰撞避免的分布式接入机制则是其最大的特点.关于分布式接入机制的研究,目前已经有了许多的模型,但是,大部分的模型都是研究终端所产生的数据包是固定长度,很少有模型来研究终端数据包是可变长度的情况.这种情况下的难点就是不易求得碰撞发生时信道所消耗的时间长度.本文则研究在终端数据包长度的分布函数为f(x)下协议的吞吐量和延迟性能模型.首先本文将原标准协议的退避算法看成是有固定大小的竞争窗口,用以求得站点的发送概率;然后,分析信道的工作状态,给出了性能模型,重点在求解碰撞消耗的信道时间,在文章的最后,我们通过仿真试验来验证了模型的正确性.  相似文献   

14.
Coskun  Mehmet B.   《Ad hoc Networks》2008,6(6):860-877
Designing a medium access control (MAC) protocol that simultaneously provides high throughput and allows individual users to share limited spectrum resources fairly, especially in the short-term time horizon, is a challenging problem for wireless LANs. In this paper, we propose an efficient cooperative MAC protocol with very simple state information that considers only collisions, like the standard IEEE 802.11 MAC protocol. However, contrary to the IEEE 802.11 MAC, the cooperative MAC gives collided users priority to access the channel by assigning them shorter backoff counters and interframe-spaces than users who did not participate in the collision event. In other words, collided users are the only ones allowed to transmit in the following contention period. For the cooperative MAC protocol, we utilize an analytical throughput model to obtain the optimal parameter settings. Simulation results show that the cooperative MAC provides significant improvement in short-term fairness and access delay, while still providing high network throughput.  相似文献   

15.
IEEE 802.15.4 is one of the most prominent MAC protocol standard designed to achieve low-power, low-cost, and low-rate wireless personal area networks. The contention access period of IEEE 802.15.4 employs carrier sense multiple access with collision avoidance (CSMA/CA) algorithm. A long random backoff time causes longer average delay, while a small one gives a high collision rate. In this paper, we propose an efficient backoff algorithm, called EBA-15.4MAC that enhances the performance of slotted CSMA/CA algorithm. EBA-15.4MAC is designed based on two new techniques; firstly, it updates the contention window size based on the probability of collision parameter. Secondly, EBA-15.4MAC resolves the problem of access collision via the deployment of a novel Temporary Backoff (TB) and Next Temporary Backoff (NTB). In this case, the nodes not choose backoff exponent randomly as mentioned in the standard but they select TB and NTB values which can be 10–50 % of the actual backoff delay selected by the node randomly. By using these two new methods, EBA-15.4MAC minimizes the level of collision since the probability of two nodes selecting the same backoff period will be low. To evaluate the performance of EBA-15.4MAC mechanism, the network simulator has been conducted. Simulation results demonstrate that the proposed scheme significantly improves the throughput, delivery ratio, power consumption and average delay.  相似文献   

16.
IEEE 802.11在MAC层采用DCF作为主要的信道接入方式。本文分析了现有的几种802.11网络分析模型,其中B ianch i模型很好的描述了饱和状态下802.11 DCF的性能;X iao模型针对802.11e进行了多优先级的扩展,实现了EDCF的性能分析。最后介绍了一种新的分析模型,新模型同时考虑了业务优先级和内部调度算法,够较准确地描述网络性能。  相似文献   

17.
Proliferation of mobile communication devices necessitates a reliable and efficient medium access control (MAC) protocol. In this paper, A MAC protocol, called extended sliding frame reservation Aloha (ESFRA), based on sliding frame R-Aloha (SFRA) is proposed for network access technique. ESFRA is particularly designed to solve the mobile hidden station (MHS) problem in a mobile ad hoc network (MANET) by including relative locations of transmitting stations in the packet frame information header. The MHS problem is unique in mobile networks and occurs if a mobile station enters in a collision free zone of any ongoing communication and disturbs this communication with its transmission. In addition to the MHS problem, ESFRA simultaneously solves hidden station, exposed station, and neighborhood capture problems typically observed in wireless networks. A Markov model of ESFRA is developed and provided here to estimate throughput, delay and collision probabilities of the proposed protocol. The Markov modeling is extended to the analysis of SFRA and IEEE 802.11 to compare these competing MAC protocols with ESFRA. The analysis shows that ESFRA decreases frame transmission delay, increases throughput, and reduces collision probabilities compared to IEEE 802.11 and SFRA. ESFRA improves the network throughput 28 percent compared to that of IEEE 802.11, and 33 percent compared to that of SFRA. The improved performance is obtained at the expense of the synchronization compared to IEEE 802.11, but there is virtually no extra cost compared to SFRA.  相似文献   

18.
Performance Analysis of IEEE 802.11 DCF in Imperfect Channels   总被引:1,自引:0,他引:1  
IEEE 802.11 is the most important standard for wireless local area networks (WLANs). In IEEE 802.11, the fundamental medium access control (MAC) scheme is the distributed coordination function (DCF). To understand the performance of WLANs, it is important to analyze IEEE 802.11 DCF. Recently, several analytical models have been proposed to evaluate the performance of DCF under different incoming traffic conditions. However, to the best of the authors' knowledge, there is no accurate model that takes into account both the incoming traffic loads and the effect of imperfect wireless channels, in which unsuccessful packet delivery may occur due to bit transmission errors. In this paper, the authors address this issue and provide an analytical model to evaluate the performance of DCF in imperfect wireless channels. The authors consider the impact of different factors together, including the binary exponential backoff mechanism in DCF, various incoming traffic loads, distribution of incoming packet size, queueing system at the MAC layer, and the imperfect wireless channels, which has never been done before. Extensive simulation and analysis results show that the proposed analytical model can accurately predict the delay and throughput performance of IEEE 802.11 DCF under different channel and traffic conditions.  相似文献   

19.
针对802.11 DCF在系统负载较大时不能有效利用带宽资源的缺点,该文提出一种基于效用函数的DCF优化机制(U-DCF)。通过设置站点吞吐量的对数效用函数,将带宽资源的有效利用问题建模为系统效用最大化问题;应用最优化理论将此系统问题等效为可分布式求解的用户问题,即各站点只须独立选择最大化其净效用的竞争参数(CWmin),则系统整体效用也获得最大化。仿真结果表明:与标准DCF相比,U-DCF通过预估系统的当前平均分组长度和竞争站点数来调整竞争参数CWmin,能够显著提高系统的饱和吞吐量,减小分组发送时延和丢帧率。  相似文献   

20.
Existing backoff scheme’s optimization of IEEE 802.11 DCF MAC protocol consider only saturated networks or asymptotic conditions. In real situations, traffic is bursty or streamed at low rates so that stations do not operate usually in saturated regime. In this work, we propose and analyze a backoff enhancement for IEEE 802.11 DCF that requires information only about the network size and that is quasi-optimal under all traffic loads. We first analyze the performance of DCF multiple access scheme under general load conditions in single-hop configuration and we provide an accurate delay statistics model that consider the self-loop probability in every backoff state. We prove then the short-term unfairness of the binary exponential backoff used in IEEE 802.11 by defining channel capture probability as fairness metric. Motivated by the results on fairness, we introduce the constant-window backoff scheme and we compare its performance to IEEE 802.11 DCF with Binary exponential backoff. The quasi-optimality of the proposed scheme is proved analytically and numerical results show that it increases, both the throughput and fairness, of IEEE 802.11 DCF while remaining insensitive to traffic intensity. The analysis is then extended to consider the finite queuing capacity at nodes buffers using results from the delay analysis. NS2 simulations validate the obtained results. Institut Eurecom’s research is partially supported by its industrial members: BMW Group Research & Technology—BMW Group Company, Bouygues Telecom, Cisco Systems, France Telecom , Hitachi Europe, SFR, Sharp, STMicroelectronics, Swisscom, Thales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号