首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present a collision free MAC protocol for wireless networks with smart antennas that provides proportional service differentiation to various classes of traffic based on their respective bandwidth demand. The proposed protocol works for diverse physical parameters such as number of interfaces at each node, number of communication frequencies, and antenna beamwidth. To the best of our knowledge, this is the first work that provides link layer differentiated services for wireless networks with smart antennas and explores the influence of the physical parameters and network topology on the performance of the MAC layer. Ashish Deopura received his B.Tech degree in Electrical Engineering from the Indian Institute of Technology Delhi, India, in 2003, and he received his M.S. degree in Computer Systems Engineering from the University of Massachusetts Amherst, in 2005. He currently works as a Modeling Engineer for OPNET Technologies located in Bethesda, MD Professor Aura Ganz is the director of the Multimedia Networking Laboratory at the University of Massachusetts at Amherst. She has authored more than 170 journal and conference papers in the areas of multimedia wireless networks, ubiquitous computing, telemedicine, and security. She is a co-author of the book: “Multimedia Wireless Networks”, Prentice Hall, 2003. Some of her recent assignments include: general co-chair of the IEEE UWBNETS workshop, general co-chair of the IEEE BROADMED workshop, general co-chair of the Massachusetts 3rd Annual R&D Conference, keynote speaker at the NSF sponsored workshop in Mobile Computing, and invited speaker at Personal and Local Wireless Network Solutions conference, and Motorola’s Wireless Communications Futures Forum, Wireless Local Area Networks Conference. She has a PhD, MSc and BSc in Computer Science from the Technion in Israel. More details can be found at: dvd1.ecs.umass.edu/wireless.  相似文献   

2.
This paper presents DARC (Directional Adaptive Range Control), a range control mechanism using directional antennas to be implemented across multiple layers. DARC uses directional reception for range control rather than directional transmission in order to achieve both range extension and high spatial reuse. It adaptively controls the communication range by estimating dynamically changing local network density based on the transmission activities around each network node. The experimental results using simulation with detailed physical layer, IEEE 802.11 DCF MAC, and AODV protocol models have shown the successful adaptation of communication range with DARC for varied network densities and traffic loads. DARC improves the packet delivery ratio by a factor of 9 at the maximum for sparse networks while it maintains the increased network capacity for dense networks. Further, as each node adaptively changes the communication range, the network delivers up to 20% more packets with DARC compared to any fixed range configurations.Mineo Takai is a Principal Development Engineer in the Computer Science Department at University of California, Los Angeles. He received his B.S., M.S. and Ph.D. degrees, all in electrical engineering, from Waseda University, Tokyo, Japan, in 1992, 1994 and 1997 respectively.Dr. Takai’s research interests include parallel and distributed computing, mobile computing and networking, and modeling and simulation of networked systems. He is a member of the ACM, the IEEE and the IEICE.Junlan Zhou received her B.S in Computer Science from Huazhong University of Science and Technology in 1998, her M.Eng in Computer Engineering from Nanyang Technological University in 2001 and her M.S in Computer Science from University of California, Los Angeles in 2003. She is currently a Ph.D candidate in the Computer Science Department at University of California, Los Angeles. Her research interests include modeling and simulation of wireless networks, protocol design and analysis of wireless networks, and broad areas of distributed computing.Rajive Bagrodia is a Professor of Computer Science at UCLA. He obtained a Bachelor of Technology in electrical engineering from the Indian Institute of Technology, Bombay and a Ph.D. in Computer Science from the University of Texas at Austin. Professor Bagrodia’s research interests include~wireless networks, performance modeling and~simulation, and nomadic computing. He has published over a hundred research papers on the preceding topics. The research has been funded by a variety of government and industrial sponsors including the National Science Foundation, Office of Naval Research, and the Defense Advanced Research Projects Agency. He is an associate editor of the ACM Transactions on Modeling and Computer Systems (TOMACS).  相似文献   

3.
Over the past few years, wireless networking technologies have made vast forays into our daily lives. Today, one can find 802.11 hardware and other personal wireless technology employed at homes, shopping malls, coffee shops and airports. Present-day wireless network deployments bear two important properties: they are unplanned, with most access points (APs) deployed by users in a spontaneous manner, resulting in highly variable AP densities; and they are unmanaged, since manually configuring and managing a wireless network is very complicated. We refer to such wireless deployments as being chaotic. In this paper, we present a study of the impact of interference in chaotic 802.11 deployments on end-client performance. First, using large-scale measurement data from several cities, we show that it is not uncommon to have tens of APs deployed in close proximity of each other. Moreover, most APs are not configured to minimize interference with their neighbors. We then perform trace-driven simulations to show that the performance of end-clients could suffer significantly in chaotic deployments. We argue that end-client experience could be significantly improved by making chaotic wireless networks self-managing. We design and evaluate automated power control and rate adaptation algorithms to minimize interference among neighboring APs, while ensuring robust end-client performance. This work was supported by the Army Research Office under grant number DAAD19-02-1-0389, and by the NSF under grant numbers ANI-0092678, CCR-0205266, and CNS-0434824, as well as by IBM and Intel. Aditya Akella obtained his Ph.D. in Computer Science from Carnegie Mellon University in September 2005. He obtained a B.Tech in Computer Science and Engineering from IIT Madras in May 2000. Currently, Dr. Akella is a post-doctoral associate at Stanford University. He will join the Computer Sciences faculty at the University of Wisconsin-Madison in Fall 2006. Dr. Akella's research interests include Internet Routing, Network Protocol Design, Internet Security, and Wireless Networking. His web page is at . Glenn Judd, is a Computer Science Ph.D. candidate at Carnegie Mellon University. His research interests include wireless networking and pervasive computing. He has an M.S. and B.S. in Computer Science from Brigham Young University. Srinivasan Seshan is currently an Associate Professor and holds the Finmeccanica chair at Carnegie Mellon University’s Computer Science Department. Dr. Seshan received his Ph.D. in 1995 from the Computer Science Department at University of California, Berkeley. From 1995 to 2000, Dr. Seshan was a research staff member at IBM’s T.J. Watson Research Center. Dr. Seshan’s primary interests are in the broad areas of network protocols and distributed network applications. In the past, he has worked on topics such as transport/routing protocols for wireless networks, fast protocol stack implementations, RAID system design, performance prediction for Internet transfers, Web server benchmarking, new approaches to congestion control, firewall design and improvements to the TCP protocol. His current work explores new approaches in overlay networking, sensor networking, online multiplayer games and wide-area Internet routing. His web page is at . Peter Steenkiste is a Professor of Computer Science and of Electrical and Computer Engineering at Carnegie Mellon University. His research interests include networking, distributed systems, and pervasive computing. He received an M.S. and Ph.D. in Electrical Engineering from Stanford University and an Engineering degree from the University of Gent, Belgium. You can learn more about his research from his home page .  相似文献   

4.
Traditional cellular networks provide a centralized wireless networking paradigm within the wireless domain with the help of fixed infrastructure nodes such as Base Stations (BSs). On the other hand, Ad hoc wireless networks provide a fully distributed wireless networking scheme with no dependency on fixed infrastructure nodes. Recent studies show that the use of multihop wireless relaying in the presence of infrastructure based nodes improves system capacity of wireless networks. In this paper, we consider three recent wireless network architectures that combine the multihop relaying with infrastructure support – namely Integrated Cellular and Ad hoc Relaying (iCAR) system, Hybrid Wireless Network (HWN) architecture, and Multihop Cellular Networks (MCNs), for a detailed qualitative and quantitative performance evaluation. MCNs use multihop relaying by the Mobile Stations (MSs) controlled by the BS. iCAR uses fixed Ad hoc Relay Stations (ARSs) placed at the boundaries to relay excess traffic from a hot cell to cooler neighbor cells. HWN dynamically switches its mode of operation between a centralized Cellular mode and a distributed Ad hoc mode based on the throughput achieved. An interesting observation derived from these studies is that, none of these architectures is superior to the rest, rather each one performs better in certain conditions. MCN is found to be performing better than the other two architectures in terms of throughput, under normal traffic conditions. At very high node densities, the variable power control employed in HWN architecture is found to be having a superior impact on the throughput. The mobility of relay stations significantly influences the call dropping probability and control overhead of the system and hence at high mobility iCAR which uses fixed ARSs is found to be performing better. This work was supported by Infosys Technologies Ltd., Bangalore, India and the Department of Science and Technology, New Delhi, India. B. S. Manoj received his Ph.D degree in Computer Science and Engineering from the Indian Institute of Technology, Madras, India, in July 2004. He has worked as a Senior Engineer with Banyan Networks Pvt. Ltd., Chennai, India from 1998 to 2000 where his primary responsibility included design and development of protocols for real-time traffic support in data networks. He had been an Infosys doctoral student in the Department of Computer Science and Engineering at the Indian Institute of Technology-Madras, India. He is a recipient of the Indian Science Congress Association Young Scientist Award for the Year 2003. Since the beginning of 2005, he has been a post doctoral researcher in the Department of Electrical and Computer Engineering, University of California, San Diego. His current research interests include ad hoc wireless networks, next generation wireless architectures, and wireless sensor networks. K. Jayanth Kumar obtained his B.Tech degree in Computer Science and Engineering in 2002 from the Indian Institute of Technology, Madras, India. He is currently working towards the Ph.D degree in the department of Computer Science at the University of California, Berkeley. Christo Frank D obtained his B.Tech degree in Computer Science and Engineering in 2002 from the Indian Institute of Technology, Madras, India. He is currently working towards the Ph.D. degree in the department of Computer Science at the University of Illinois at Urbana-Champaign. His current research interests include wireless networks, distributed systems, and operating systems. C. Siva Ram Murthy received the B.Tech. degree in Electronics and Communications Engineering from Regional Engineering College (now National Institute of Technology), Warangal, India, in 1982, the M.Tech. degree in Computer Engineering from the Indian Institute of Technology (IIT), Kharagpur, India, in 1984, and the Ph.D. degree in Computer Science from the Indian Institute of Science, Bangalore, India, in 1988. He joined the Department of Computer Science and Engineering, IIT, Madras, as a Lecturer in September 1988, and became an Assistant Professor in August 1989 and an Associate Professor in May 1995. He has been a Professor with the same department since September 2000. He has held visiting positions at the German National Research Centre for Information Technology (GMD), Bonn, Germany, the University of Stuttgart, Germany, the University of Freiburg, Germany, the Swiss Federal Institute of Technology (EPFL), Switzerland, and the University of Washington, Seattle, USA. He has to his credit over 120 research papers in international journals and over 100 international conference publications. He is the co-author of the textbooks Parallel Computers: Architecture and Programming, (Prentice-Hall of India, New Delhi, India), New Parallel Algorithms for Direct Solution of Linear Equations, (John Wiley & Sons, Inc., New York, USA), Resource Management in Real-time Systems and Networks, (MIT Press, Cambridge, Massachusetts, USA), WDM Optical Networks: Concepts, Design, and Algorithms, (Prentice Hall, Upper Saddle River, New Jersey, USA), and Ad Hoc Wireless Networks: Architectures and Protocols, (Prentice Hall, Upper Saddle River, New Jersey, USA). His research interests include parallel and distributed computing, real-time systems, lightwave networks, and wireless networks. Dr.Murthy is a recipient of the Sheshgiri Kaikini Medal for the Best Ph.D. Thesis from the Indian Institute of Science, the Indian National Science Academy (INSA) Medal for Young Scientists, and Dr. Vikram Sarabhai Research Award for his scientific contributions and achievements in the fields of Electronics, Informatics, Telematics & Automation. He is a co-recipient of Best Paper Awards from the 1st Inter Research Institute Student Seminar (IRISS) in Computer Science, the 5th IEEE International Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), and the 6th and 11th International Conference on High Performance Computing (HiPC). He is a Fellow of the Indian National Academy of Engineering.  相似文献   

5.
6.
In this paper we present PEAS, a randomized energy-conservation protocol that seeks to build resilient sensor networks in the presence of frequent, unexpected node failures. PEAS extends the network lifetime by maintaining a necessary set of working nodes and turning off redundant ones, which wake up after randomized sleeping times and replace failed ones when needed. The fully localized operations of PEAS are based on each individual node's observation of its local environment but do not require per neighbor state at any node; this allows PEAS to scale to very dense node deployment. PEAS is highly robust against node failures due to its simple operations and randomized design; it also ensures asymptotic connectivity. Our simulations and analysis show that PEAS can maintain an adequate working node density in presence of as high as 38% node failures, and a roughly constant overhead of less than 1% of the total energy consumption under various deployment densities. It extends a sensor network's functioning time in linear proportional to the deployed sensor population. Fan Ye received his B.E. in Automatic Control in 1996 and M.S. in Computer Science in 1999, both from Tsinghua University, Beijing, China. He received his Ph.D. in Computer Science in 2004 from UCLA. He is currently with IBM Research. His research interests are in wireless networks, sensor networks and security. Honghai Zhang received his BS in Computer Science in 1998 from University of Science and Technology of China. He received his MS and Ph.D. in Computer Science from University of Illinois at Urbana-Champaign. He is currently with the Wireless Advanced Technology Lab of Lucent Technologies. His research interests are wireless networks, WiMAX, and VoIP over wireless networks. Songwu Lu received both his M.S. and Ph.D. from University of Illinois at Urbana-Champaign. He is currently an associate professor at UCLA Computer Science. He received NSF CAREER award in 2001. His research interests include wireless networking, mobile computing, wireless security, and computer networks. Lixia Zhang received her Ph.D in computer science from the Massachusetts Institute of Technology. She was a member of the research staff at the Xerox Palo Alto Research Center before joining the faculty of UCLA’s Computer Science Department in 1995. In the past she has served on the Internet Architecture Board, Co-Chair of IEEE Communication Society Internet Technical Committee, the editorial board for the IEEE/ACM Transactions on Networking, and technical program committees for many networking-related conferences including SIGCOMM and INFOCOM. Zhang is currently serving as the vice chair of ACM SIGCOMM. Jennifer C. Hou received the Ph.D. degree in Electrical Engineering and Computer Science from The University of Michigan, Ann Arbor in 1993 and is currently a professor in the Department of Computer Science at University of Illinois at Urbana Champaign (UIUC). Prior to joining UIUC, she has taught at Ohio State University and University of Wisconsin - Madison. Dr. Hou has worked in the the areas of network modeling and simualtion, wireless-enabled software infrastructure for assisted living, and capacity optimization in wireless networks. She was a recipient of an ACM Recognition of Service, a Cisco University Research Award, a Lumley Research Award from Ohio State University, and a NSF CAREER award. *A Shorter version of this paper appeared in ICDCS 2003.  相似文献   

7.
In many applications, wireless ad-hoc networks are formed by devices belonging to independent users. Therefore, a challenging problem is how to provide incentives to stimulate cooperation. In this paper, we study ad-hoc games—the routing and packet forwarding games in wireless ad-hoc networks. Unlike previous work which focuses either on routing or on forwarding, this paper investigates both routing and forwarding. We first uncover an impossibility result—there does not exist a protocol such that following the protocol to always forward others' traffic is a dominant action. Then we define a novel solution concept called cooperation-optimal protocols. We present Corsac, a cooperation-optimal protocol which consists of a routing protocol and a forwarding protocol. The routing protocol of Corsac integrates VCG with a novel cryptographic technique to address the challenge in wireless ad-hoc networks that a link’s cost (i.e., its type) is determined by two nodes together. Corsac also applies efficient cryptographic techniques to design a forwarding protocol to enforce the routing decision, such that fulfilling the routing decision is the optimal action of each node in the sense that it brings the maximum utility to the node. We evaluate our protocols using simulations. Our evaluations demonstrate that our protocols provide incentives for nodes to forward packets. Additionally, we discuss the challenging issues in designing incentive-compatible protocols in ad hoc networks. Part of this paper appeared in a conference version [49]. Sheng Zhong was supported in part by NSF grants ANI-0207399 and CNS-0524030. Yang Richard Yang was supported in part by NSF grants ANI-0207399, ANI-0238038, and CNS-0435201. This work was partly done while Sheng Zhong was at Yale University; Yanbin Liu was at University of Texas at Austin. Sheng Zhong is an assistant professor in the State University of New York at Buffalo. He received his PhD (2004) from Yale University and his ME (1999), BS (1996) from Nanjing University, China, all in computer science. His research interests include economic incentives and privacy protection, particularly incentive and privacy problems in mobile computing and data mining. Li Erran Li received his B.E. in Automatic Control from Beijing Polytechnic University in 1993, his M.E. in Pattern Recognition from the Institute of Automation, Chinese Academy of Sciences, in 1996, and his Ph.D. in Computer Science from Cornell University in 2001 where Joseph Y. Halpern was his advisor. He is presently a member of the Networking Research Center in Bell Labs. His research interests are in networking with a focus on wireless networking and mobile computing. He has served as a program committee member for several conferences including ACM MobiCom, ACM MobiHoc, IEEE INFOCOM and IEEE ICNP. He is a guest editor for JSAC special issue on Non-Cooperative Behavior in Networking. He has published over 30 papers. Yanbin Liu received her B.E. degree in Computer Science and Technology from Tsinghua University (1993), Beijing, China, in 1993, and her M.S. degree in Computer Science from the University of Texas at Austin (1998), where is a Ph.D. candidate. Since 2006, he has been with IBM TJ Watson Research Center, Hawthorne, NY. Her research interests are in real-time systems, grid computing, mobile computing, and computer networks. Yang Richard Yang received his B.E. degree in Computer Science and Technology from Tsinghua University, Beijing, China, in 1993, and his M.S. and Ph.D. degrees in Computer Science from the University of Texas at Austin in 1998 and 2001, respectively. Since 2001, he has been with the Department of Computer Science, Yale University, New Haven, CT, where currently he is an Associate Professor. His current research interests are in computer networks, mobile computing, and sensor networks. He leads the Laboratory of Networked Systems (LANS) at Yale University.  相似文献   

8.
A Practical Cross-Layer Mechanism For Fairness in 802.11 Networks   总被引:2,自引:0,他引:2  
Many companies, organizations and communities are providing wireless hotspots that provide networking access using 802.11b wireless networks. Since wireless networks are more sensitive to variations in bandwidth and environmental interference than wired networks, most networks support a number of transmission rates that have different error and bandwidth properties. Access points can communicate with multiple clients running at different rates, but this leads to unfair bandwidth allocation. If an access point communicates with a mix of clients using both 1 Mb/s and 11 Mb/s transmission rates, the faster clients are effectively throttled to 1 Mb/s as well. This happens because the 802.11 MAC protocol approximate “station fairness”, with each station given an equal chance to access the media. We provide a solution to provide “rate proportional fairness”, where the 11 Mb/s stations receive more bandwidth than the 1 Mb/s stations. Unlike previous solutions to this problem, our mechanism is easy to implement, works with common operating systems and requires no change to the MAC protocol or the stations. Joseph Dunn received an M.S. in computer science from the University of Colorado at Boulder in 2003, and B. S. in coputer science and mathematics from the University of Arizona in 2001. His research interests are in the general area of computer systems, primarily focusing on security and scalability in distributed systems. He is currently working on his Ph.D. in computer science from the University of Colorado at Boulder. Michael Neufeld received a Ph.D. in Computer Science from the University of Colorado at Boulder in December of 2004, having previously received an M.S. in Computer Science from the University of Colorado at Boulder in 2000 and an A.B. in Computer Science from Princeton University in 1993. His research interests are in the general area of computer system, specifically concentrating on wireless networking, software defind/cognitive radio, and streerable antennas. He is currently a postdoc in the Computer Science department at the University of Calorado at Boulder pursuing research related to software defined radio and new MAC protocols for steerable phase array antennas. Anmol Sheth is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He received his B.S. in Computer Science from the University of Pune, India in 2001. He has been co-leading the development of the MANTIS operating system. He has co-authored three papers include MAC layer protocol design, energy-efficient wireless communication, and adapting communications to mobility. Dirk Grunwald received his Ph.D. from the University of Illinois in 1989 and joined the University of Colorado the same year. His work addresses research and teaching in the broad area of “computer systems”, which includes computer architecture, operating systems, networks, and storage systems. His interests also include issues in pervasive computing, novel computing models, and enjoying the mountains. He is currently an Associate Professor in the Department of Computer Science and in Electrical and Computer Engineering and is also the Director of the Colorado Center for Information Storage. John Bennett is a Professor of Computer Science with a joint appointment in Electrical and Computer Engineering at the University of Colorado at Boulder. He also serves as Associate Dean for Education in the College of Engineering and Applied Science. He joined the CU-Boulder faculty in 2000, after serving on the faculty of Rice University for 11 years. While at Rice, Bennett pioneered a course in engineering design for both engineering and non-engineering students that has been emulated at several universities and high schools. In addition to other teaching awards, Bennett received the Keck Foundation National Award for Engineering Teaching Excellence for his work on this course. Bennett received his Ph.D. in 1988 from the University of Washington. Prior to completing his doctoral studies, he was a U.S. Naval Officer for several years and founded and served as President of Pacific Mountain Research, Inc., where he supervised the design and development of a number of commercial computing systems. Bennett's primary research interests are broadly focused in the area of distributed systems, and more narrowly in distributed information management and distributed robotic macrosensors.  相似文献   

9.
The MANTIS MultimodAl system for NeTworks of In-situ wireless Sensors provides a new multithreaded cross-platform embedded operating system for wireless sensor networks. As sensor networks accommodate increasingly complex tasks such as compression/aggregation and signal processing, preemptive multithreading in the MANTIS sensor OS (MOS) enables micro sensor nodes to natively interleave complex tasks with time-sensitive tasks, thereby mitigating the bounded buffer producer-consumer problem. To achieve memory efficiency, MOS is implemented in a lightweight RAM footprint that fits in less than 500 bytes of memory, including kernel, scheduler, and network stack. To achieve energy efficiency, the MOS power-efficient scheduler sleeps the microcontroller after all active threads have called the MOS sleep() function, reducing current consumption to the μA range. A key MOS design feature is flexibility in the form of cross-platform support and testing across PCs, PDAs, and different micro sensor platforms. Another key MOS design feature is support for remote management of in-situ sensors via dynamic reprogramming and remote login. Shah Bhatti is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He also works as a Senior Program Manager in the R&D Lab for Imaging and Printing Group (IPG) at Hewlett Packard in Boise, Idaho. He has participated as a panelist in workshops on Integrated Architecture for Manufacturing and Component-Based Software Engineering, at IJCAI ‘89 and ICSE ‘98, respectively. Hewlett Packard has filed several patents on his behalf. He received an MSCS and an MBA from the University of Colorado, an MSCE from NTU and a BSCS from Wichita State University. His research interests include power management, operating system design and efficient models for wireless sensor networks. James Carlson is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He received his Bachelor’s degree from Hampshire College in 1997. His research is supported by the BP Visualization Center at CU-Boulder. His research interests include computer graphics, 3D visualization, and sensor-enabled computer-human user interfaces. Hui Dai is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He received his B.E. from the University of Science and Technology, China in 2000, and received has M.S. in Computer Science from the University of Colorado at Boulder in 2002. He has been co-leading the development of the MANTIS OS. His research interests include system design for wireless sensor networks, time synchronization, distributed systems and mobile computing. Jing Deng is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He received his B.E. from Univeristy of Electronic Science and Technology of China in 1993, and his M.E from Institute of Computing Technology, Chinese Academy of Science in 1996. He has published four papers on security wireless sensor networks and is preparing a book chapter on security, privacy, and fault tolerance in sensor networks. His research interests include wireless security, secure network routing, and security for sensor networks. Jeff Rose is an M.S. student in Computer Science at the University of Colorado at Boulder. He received his B.S. in Computer Science from the University of Colorado at Boulder in 2003. He has been co-leading the development of the MANTIS operating system. His research interests include data-driven routing in sensor networks. Anmol Sheth is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He received his B.S. in Computer Science from the University of Pune, India in 2001. His research interests include MAC layer protocol design, energy-efficient wireless communication, and adapting communications to mobility. Brian Shucker is a Ph.D. student in Computer Science at the University of Colorado at Boulder. He received his B.S. in Computer Science from the University of Arizona in 2001, and his M.S. in Computer Science from the University of Colorado at Boulder in December 2003. He has been co-leading the development of the MANTIS operating system. His research interests in wireless sensor networks include operating systems design, communication networking, and robotic sensor networks. Charles Gruenwald is an undergraduate student in Computer Science at the University of Colorado at Boulder. He joined the MANTIS research group in Fall 2003 as an undergraduate researcher. Adam Torgerson is an undergraduate student in Computer Science at the University of Colorado at Boulder. He joined the MANTIS research group in Fall 2003 as an undergraduate researcher. Richard Han joined the Department of Computer Science at the University of Colorado at Boulder in August 2001 as an Assistant Professor, Prof. Han leads the MANTIS wireless sensor networking research project, http://mantis.cs.colorado.edu. He has served on numerous technical program committees for conferences and workshops in the field of wireless sensor networks. He received a National Science Foundation CAREER Award in 2002 and IBM Faculty Awards in 2002 and 2003. He was a Research Staff Member at IBM’s Thomas J. Watson Research Center in Hawthorne, New York from 1997-2001. He received his Ph.D. in Electrical Engineering from the University of California at Berkeley in 1997, and his B.S. in Electrical Engineering with distinction from Stanford University in 1989. His research interests include systems design for sensor networks, secure wireless sensor networks, wireless networking, and sensor-enabled user interfaces.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

10.
We analyze an architecture based on mobility to address the problem of energy efficient data collection in a sensor network. Our approach exploits mobile nodes present in the sensor field as forwarding agents. As a mobile node moves in close proximity to sensors, data is transferred to the mobile node for later depositing at the destination. We present an analytical model to understand the key performance metrics such as data transfer, latency to the destination, and power. Parameters for our model include: sensor buffer size, data generation rate, radio characteristics, and mobility patterns of mobile nodes. Through simulation we verify our model and show that our approach can provide substantial savings in energy as compared to the traditional ad-hoc network approach. Sushant Jain is a Ph.D. candidate in the Department of Computer Science and Engineering at the University of Washington. His research interests are in design and analysis of routing algorithms for networking systems. He received a MS in Computer Science from the University of Washington in 2001 and a B.Tech degree in Computer Science from IIT Delhi in 1999. Rahul C. Shah completed the B. Tech (Hons) degree from the Indian Institute of Technology, Kharagpur in 1999 majoring in Electronics and Electrical Communication Engineering. He is currently pursuing his Ph.D. in Electrical Engineering at the University of California, Berkeley. His research interests are in energy-efficient protocol design for wireless sensor/ad hoc networks, design methodology for protocols and next generation cellular networks. Waylon Brunette is a Research Engineer in the Department of Computer Science and Engineering at the University of Washington. His research interests include mobile and ubiquitous computing, wireless sensor networks, and personal area networks. Currently, he is engaged in collaborative work with Intel Research Seattle to develop new uses for embedded devices and RFID technologies in ubiquitous computing. He received a BS in Computer Engineering from the University of Washington in 2002. Gaetano Borriello is a Professor in the Department of Computer Science and Engineering at the University of Washington. His research interests are in embedded and ubiquitous computing, principally new hardware devices that integrate seamlessly into the user’s environment with particular focus on location and identification systems. His principal projects are in creating manageable RFID systems that are sensitive to user privacy concerns and in context-awareness through sensors distributed in the environment as well as carried by users. Sumit Roy received the B. Tech. degree from the Indian Institute of Technology (Kanpur) in 1983, and the M. S. and Ph. D. degrees from the University of California (Santa Barbara), all in Electrical Engineering in 1985 and 1988 respectively, as well as an M. A. in Statistics and Applied Probability in 1988. His previous academic appointments were at the Moore School of Electrical Engineering, University of Pennsylvania, and at the University of Texas, San Antonio. He is presently Prof, of Electrical Engineering, Univ. of Washington where his research interests center around analysis/design of communication systems/networks, with a topical emphasis on next generation mobile/wireless networks. He is currently on academic leave at Intel Wireless Technology Lab working on high speed UWB radios and next generation Wireless LANs. His activities for the IEEE Communications Society includes membership of several technical committees and TPC for conferences, and he serves as an Editor for the IEEE Transactions on Wireless Communications.  相似文献   

11.
Designing a trusted and secure routing solution in an untrustworthy scenario is always a challenging problem. Lack of physical security and low trust levels among nodes in an ad hoc network demands a secure end-to-end route free of any malicious entity. This is particularly challenging when malicious nodes collude with one another to disrupt the network operation. In this paper we have designed a secure routing solution to find an end-to-end route free of malicious nodes with collaborative effort from the neighbors. We have also extended the solution to secure the network against colluding malicious nodes, which, to the best of our knowledge, is the first such solution proposed. We have also proposed a framework for computing and distributing trusts that can be used with out trusted routing protocol. Our proposed framework is unique and different from the other schemes in that it tries to analyze the psychology of the attacker and quantifies the behavior in the computational model. Extensive simulation has been carried out to evaluate the design of our protocol. Partially funded by Department of Defense Award No. H98230-04-C-0460, Department of Transportation Project No. FL-26-7102-00 and National Science Foundation Grant Nos. ANI-0123950 and CCR-0196557. Tirthankar Ghosh is a PhD candidate in the Telecommunications and Information Technology Institute at Florida International University. His area of research is routing security and trust computation in wireless ad hoc and sensor networks. He received his Bachelor of Electrical Engineering from Jadavpur University, India and Masters in Computer Engineering from Florida International University. Dr. Niki Pissinou received her Ph.D. in Computer Science from the University of Southern California, her M.S. in Computer Science from the University of California at Riverside, and her B.S.I.S.E. in Industrial and Systems Engineering from The Ohio State University. She is currently a tenured professor and the director of the Telecommunication & Information Technology Institute at FIU. Previously Dr. Pissinou was a tenured faculty at the Center for Advanced Computer Studies at the University of Louisiana at Lafayette where she was also the director of the Telecommunication & Information & Technology Laboratory partially funded by NASA, and the co-director of the NOMAD: A Wireless and Nomadic Laboratory partially funded by NSF, and the Advanced Network Laboratory. Dr. Pissinou is active in the fields computer networks, information technology and distributed systems. Dr. Kami (Sam) Makki has earned his Ph.D. in Computer Science from the University of Queensland in Brisbane Australia, his Masters degree in Computer Science and Engineering from the University of New South Wales in Sydney Australia, and his Bachelor and Masters Degrees in Civil Engineering from the University of Tehran Iran. Before joining the department of Electrical Engineering and Computer Science at the University of Toledo he has held a number of academic positions and research appointments at the Queensland University of Technology in Brisbane, Royal Melbourne Institution of Technology in Melbourne and at The University of Queensland in Brisbane Australia. He is an active researcher in the fields of distributed systems, databases, mobile and wireless communications, and has more than 30 publications in peerreviewed journals and international proceedings. He has served as a chair and technical program committee member and reviewer for a number of IEEE and ACM sponsored technical conferences and has received a number of achievement awards.  相似文献   

12.
To achieve high throughput in wireless networks, smart forwarding and processing of packets in access routers is critical for overcoming the effects of the wireless links. However, these services cannot be provided if data sessions are protected using end-to-end encryption as with IPsec, because the information needed by these algorithms resides inside the portion of the packet that is encrypted, and can therefore not be used by the access routers. A previously proposed protocol, called Multi-layered IPsec (ML-IPsec) modifies IPsec in a way so that certain portions of the datagram may be exposed to intermediate network elements, enabling these elements to provide performance enhancements. In this paper we extend ML-IPsec to deal with mobility and make it suitable for wireless networks. We define and implement an efficient key distribution protocol to enable fast ML-IPsec session initialization, and two mobility protocols that are compatible with Mobile IP and maintain ML-IPsec sessions. Our measurements show that, depending on the mobility protocol chosen, integrated Mobile IP/ML-IPsec handoffs result in a pause of 53–100 milliseconds, of which only 28–75 milliseconds may be attributed to ML-IPsec. Further, we provide detailed discussion and performance measurements of our MML-IPsec implementation. We find the resulting protocol, when coupled with SNOOP, greatly increases throughput over scenarios using standard TCP over IPsec (165% on average). By profiling the MML-IPsec implementation, we determine the bottleneck to be sending packets over the wireless link. In addition, we propose and implement an extension to MML-IPsec, called dynamic MML-IPsec, in which a flow may switch between plaintext, IPsec and MML-IPsec. Using dynamic MML-IPsec, we can balance the tradeoff between performance and security. Heesook Choi is a Ph.D. candidate in the Department of Computer Science and Engineering at the Pennsylvania State University. She received her B.S. degree in Computer Science and Statistics and M.S. degree in Computer Science from the Chungnam National University, Korea, in 1990 and 1992 respectively. She was a senior research staff in Electronics and Telecommunications Research Institute (ETRI) in Korea before she enrolled in the Ph.D. program at the Pennsylvania State University in August 2002. Her research interests lie in security and privacy in distributed systems and wireless mobile networks, focusing on designing algorithms and conducting system research. Hui Song is a Ph.D. candidate in the Department of Computer Science and Engineering at the Pennsylvania State University, University Park. He received the M.E. degree in Computer Science from Tsinghua University, China in 2000. His research interests are in the areas of network and system security, wireless ad-hoc and sensor networks, and mobile computing. He was a recipient of the research assistant award of the Department of Computer Science and Engineering at the Pennsylvania State University in 2005. Guohong Cao received his BS degree from Xian Jiaotong University, Xian, China. He received the MS degree and Ph.D. degree in computer science from the Ohio State University in 1997 and 1999 respectively. Since then, he has been with the Department of Computer Science and Engineering at the Pennsylvania State University, where he is currently an Associate Professor. His research interests are wireless networks and mobile computing. He has published over one hundred papers in the areas of sensor networks, wireless network security, data dissemination, resource management, and distributed fault-tolerant computing. He is an editor of the IEEE Transactions on Mobile Computing and IEEE Transactions on Wireless Communications, a guest editor of special issue on heterogeneous wireless networks in ACM/Kluwer Mobile Networking and Applications, and has served on the program committee of many conferences. He was a recipient of the NSF CAREER award in 2001. Thomas F. La Porta received his B.S.E.E. and M.S.E.E. degrees from The Cooper Union, New York, NY, and his Ph.D. degree in Electrical Engineering from Columbia University, New York, NY. He joined the Computer Science and Engineering Department at Penn State in 2002 as a Full Professor. He is the Director of the Networking and Security Research Center at Penn State. Prior to joining Penn State, Dr. La Porta was with Bell Laboratories since 1986. He was the Director of the Mobile Networking Research Department in Bell Laboratories, Lucent Technologies where he led various projects in wireless and mobile networking. He is a Bell Labs Fellow. Dr. La Porta was the founding Editor-in-Chief of the IEEE Transactions on Mobile Computing and served as Editor-in-Chief of IEEE Personal Communications Magazine. He is currently the Director of Magazines for the IEEE Communications Society and is a member of the Communications Society Board of Governors. He has published over 50 technical papers and holds 28 patents. His research interests include mobility management, signaling and control for wireless networks, mobile data systems, and protocol design.  相似文献   

13.
In this paper, we study rate allocation for a set of end-to-end communication sessions in multi-radio wireless mesh networks. We propose cross-layer schemes to solve the joint rate allocation, routing, scheduling, power control and channel assignment problems with the goals of maximizing network throughput and achieving certain fairness. Fairness is addressed using both a simplified max-min fairness model and the well-known proportional fairness model. Our schemes can also offer performance upper bounds such as an upper bound on the maximum throughput. Numerical results show that our proportional fair rate allocation scheme achieves a good tradeoff between throughput and fairness. Jian Tang is an assistant professor in the Department of Computer Science at Montana State University. He received the Ph.D. degree in Computer Science from Arizona State University in 2006. His research interest is in the area of wireless networking and mobile computing. He has served on the technical program committees of multiple international conferences, including ICC, Globecom, IPCCC and QShine. He will also serve as a publicity co-chair of International Conference on Autonomic Computing and Communication Systems (Autonomics’2007). Guoliang Xue is a Full Professor in the Department of Computer Science and Engineering at Arizona State University. He received the Ph.D. degree in Computer Science from the University of Minnesota in 1991 and has held previous positions at the Army High Performance Computing Research Center and the University of Vermont. His research interests include efficient algorithms for optimization problems in networking, with applications to fault tolerance, robustness, and privacy issues in networks ranging from WDM optical networks to wireless ad hoc and sensor networks. He has published over 150 papers in these areas. His research has been continuously supported by federal agencies including NSF and ARO. He is the recipient of an NSF Research Initiation Award in 1994 and an NSF-ITR Award in 2003. He is an Associate Editor of Computer Networks (COMNET), the IEEE Network Magazine, and Journal of Global Optimization. He has served on the executive/program committees of many IEEE conferences, including INFOCOM, SECON, IWQOS, ICC, GLOBECOM and QShine. He is the General Chair of IEEE IPCCC’2005, a TPC co-Chair of IPCCC’2003, HPSR’2004, IEEE Globecom’2006 Symposium on Wireless Ad Hoc and Sensor Networks, IEEE ICC’2007 Symposium on Wireless Ad Hoc and Sensor Networks, and QShine’2007. He is a senior member of IEEE. Weiyi Zhang received the M.E. degree in 1999 from Southeast University, China. Currently he is a Ph.D. student in the Department of Computer Science and Engineering at Arizona State University. His research interests include reliable communication in networking, protection and restoration in WDM networks, and QoS provisioning in communication networks.  相似文献   

14.
We introduce MoB, an infrastructure for collaborative wide-area wireless data services. MoB proposes to change the current model of data services in the following fundamental ways: (1) it decouples infrastructure providers from services providers and enables fine-grained competition, (2) it allows service interactions on arbitrary timescales, and, (3) it promotes flexible composition of these fine-grained service interactions based on user and application needs. At the heart of MoB is an open market architecture in which mobile users can opportunistically trade various services with each other in a flexible manner. In this paper we first describe the overall architecture of MoB including various enablers like user reputation management, incentive management, and accounting services. We next present our experience from both simulations as well as our prototype implementation of MoB in enhancing application performance in multiple different scenarios—file transfers, web browsing, media streaming, and location-enhanced services. This work is supported in part by NSF grants CNS-0520152, CNS-0639434, CNS-0627589 and CNS-0627102. Rajiv Chakravorty received the B.E. degree from Nagpur University, Nagpur, India, in 1997 and the M.Tech. degree form the Indian Institute of Technology, Delhi in 1999. He is working towards the Ph.D. degree at the Computer Laboratory, University of Cambridge, U.K. In 2005 he was a visiting research scholar in the Department of Computer Sciences, University of Wisconsin, Madison. He has worked with Philips Research, ASA Laboratories, Eindhoven, The Netherlands. He also pursued research at ComNets, RWTH-Aachen, Germany. His current interests include mobile and wireless systems, and networking. He is a recipient of DAAD Scholarship Award from Germany, and the Sun Microsystems Scholarship and the Hughes Hall Commonwealth scholarhip from Cambridge Univeristy. Sulabh Agarwal received the B.Tech. degree in Computer Science and Engineering from Indian Institute of Technology, Delhi in 2000, and the M.S. degree in Computer Science from University of Maryland, College Park in 2002. His research interest is in the area of computer networking. Suman Banerjee received the B.Tech. degree in Computer Science and Engineering from Indian Institute of Technology, Kanpur in 1996, and the M.S. and the Ph.D. degrees in Computer Science from University of Maryland, College Park in 1999 and 2003 respectively. He is an Assistant Professor of Computer Sciences at University of Wisconsin-Madison and heads the Wisconsin Wireless and NetworkinG Systems (WiNGS) laboratory. His broad research interests are in the areas of networking and distributed systems with a special focus in the area of wireless and mobile networking systems. Ian Pratt received the Ph.D. in Computer Science from University of Cambridge, Cambridge, U.K. He was elected a Fellow of King’s College, Cambridge, U.K., in 1996. He is a Senior Faculty member at the Computer Loboratory, University of Cambridge, Cambridge, U.K. He is a a leader of the Systems Research Group, where he has been architect of a number of influential projects, including the Desk Area Network workstation, the Cambridge Open Mobile System, the Xen Virtual Machine Monitor, and the XenoServer infrastructure for global computing. His research interests cover a broad range if systems topics, including computer architecture, operating system design, mobile systems, and networking.  相似文献   

15.
In this paper, we study an approach for sharing channels to improve network utilization in packet-switched cellular networks. Our scheme exploits unused resources in neighboring cells without the need for global coordination. We formulate a minimax approach to optimizing the allocation of channels in this sharing scheme. We develop a measurement-based distributed algorithm to achieve this objective and study its convergence. We illustrate, via simulation results, that the distributed channel sharing scheme performs significantly better than the fixed channel scheme over a wide variety of traffic conditions. This research was supported in part by the National Science Foundation through grants ECS-0098089, ANI-0099137, ANI-0207892, ANI-9805441, ANI-0099137, and ANI-0207728, and by an Indiana 21st century grant. A conference version of this paper appeared in INFOCOM 99. This work was done when all the authors were at Purdue University. Suresh Kalyanasundaram received his Bachelors degree in Electrical and Electronics Engineering and Masters degree in Physics from Birla Institute of Technology and Science, Pilani, India in 1996. He received his Ph.D. from the School of Electrical and Computer Engineering, Purdue University, in May 2000. Since then he has been with Motorola, working in the area of performance analysis of wireless networks. Junyi Li received his B.S. and M.S. degrees from Shanghai Jiao Tong University, and Ph.D. degree from Purdue University. He was with the Department of Digital Communications Research at Bell Labs, Lucent Technologies from 1998 to 2000. In 2000 as a founding member he jointed Flarion Technologies, where he is now Director of Technology. He is a senior member of IEEE. Edwin K.P. Chong received the B.E.(Hons.) degree with First Class Honors from the University of Adelaide, South Australia, in 1987; and the M.A. and Ph.D. degrees in 1989 and 1991, respectively, both from Princeton University, where he held an IBM Fellowship. He joined the School of Electrical and Computer Engineering at Purdue University in 1991, where he was named a University Faculty Scholar in 1999, and was promoted to Professor in 2001. Since August 2001, he has been a Professor of Electrical and Computer Engineering and a Professor of Mathematics at Colorado State University. His current interests are in communication networks and optimization methods. He coauthored the recent book, An Introduction to Optimization, 2nd Edition, Wiley-Interscience, 2001. He was on the editorial board of the IEEE Transactions on Automatic Control, and is currently an editor for Computer Networks. He is an IEEE Control Systems Society Distinguished Lecturer. He received the NSF CAREER Award in 1995 and the ASEE Frederick Emmons Terman Award in 1998. Ness B. Shroff received his Ph.D. degree from Columbia University, NY in 1994. He is currently an Associate Professor in the School of Electrical and Computer Engineering at Purdue University. His research interests span the areas of wireless and wireline communication networks. He is especially interested in fundamental problems in the design, performance, scheduling, capacity, pricing, and control of these networks. His research is funded by various companies such as Intel, Hewlett Packard, Nortel, AT&T, and L. G. Electronics; and government agencies such as the National Science Foundation, Indiana Dept. of Transportation, and the Indiana 21st Century fund. Dr. Shroff is an editor for IEEE/ACM Trans. on Networking and the Computer Networks Journal, and past editor of IEEE Communications Letters. He was the conference chair for the 14th Annual IEEE Computer Communications Workshop (in Estes Park, CO, October 1999) and program co-chair for the symposium on high-speed networks, Globecom 2001 (San Francisco, CA, November 2000). He is also the Technical Program co-chair for IEEE INFOCOM'03 and panel co-chair for ACM Mobicom'02. He received the NSF CAREER award in 1996.  相似文献   

16.
The capacity of wireless ad hoc networks is constrained by the interference caused by the neighboring nodes. Gupta and Kumar have shown that the throughput for such networks is only Θ bits per second per node in a unit area domain when omnidirectional antennas are used [1]. In this paper we investigate the capacity of ad hoc wireless networks using directional antennas. Using directional antennas reduces the interference area caused by each node, thus increases the capacity of the network. We will give an expression for the capacity gain and we argue that in the limit, when the beam-width goes to zero the wireless network behaves like the wired network. In our analysis we consider both arbitrary networks and random networks where nodes are assumed to be static. We have also analyzed hybrid beamform patterns that are a mix of omnidirectional/directional and a better model of real directional antennas. Simulations are conducted for validation of our analytical results. Su Yi received the B.S. and M.S degrees in automation from Tsinghua University, China, in 1998 and 2001, respectively. She received her Ph.D. degree in electrical engineering from Rensselaer Polytechnic Institute, in December 2005. Her research interests include various topics in wireless ad hoc networks, including capacity of wireless networks, error control coding, and multimedia communications over wireless. Yong Pei is currently a tenure-track assistant professor in the Computer Science and Engineering Department, Wright State University, Dayton, OH. Previously he was a visiting assistant professor in the Electrical and Computer Engineering Department, University of Miami, Coral Gables, FL. He received his B.S. degree in electrical power engineering from Tsinghua University, Beijing, in 1996, and M.S. and Ph.D. degrees in electrical engineering from Rensselaer Polytechnic Institute, Troy, NY, in 1999 and 2002, respectively. His research interests include information theory, wireless communication systems and networks, and image/video compression and communications. He is a member of IEEE and ACM. Shivkumar Kalyanaraman is an Associate Professor at the Department of Electrical, Computer and Systems Engineering at Rensselaer Polytechnic Institute in Troy, NY. He received a B.Tech degree from the Indian institute of Technology, Madras, India in July 1993, followed by M.S. and Ph.D. degrees in computer and Information Sciences at the Ohio State University in 1994 and 1997 respectively. His research interests are in network traffic management topics such as congestion control, reliability, connectionless traffic engineering, quality of service (QoS), last-mile community wireless networks, low-cost free-space-optical networks, automated network management using online simulation, multicast, multimedia networking, and performance analysis. His special interest lies in developing the interdisciplinary connections between network architecture and fields like control theory, economics, scalable simulation technologies, video compression and optoelectronics. He is a member of ACM and IEEE. Babak Azimi-Sadjadi received his B.Sc. from Sharif University of Technology in 1989, his M.Sc. from Tehran University in 1992, and his Ph.D. from the University of Maryland at College Park in 2001 all in Electrical Engineering. He is currently with Intelligent Automation Inc. where he is a Senior Research Scientist He also has a joint appointment with the department of Electrical, Systems, and Computer Engineering of Rensselaer Polytechnic Institute where he is a research assistant professor. His research interests include, nonlinear filtering, networked control systems, and wireless networks.  相似文献   

17.
2005   总被引:73,自引:0,他引:73  
In recent years, wireless Internet service providers (WISPs) have established Wi-Fi hotspots in increasing numbers at public venues, providing local coverage to traveling users and empowering them with the ability to access email, Web, and other Internet applications on the move. In this paper, we observe that while the mobile computing landscape has changed both in terms of number and type of hotspot venues, there are several technological and deployment challenges remaining before hotspots can become an ubiquitous infrastructure. These challenges include authentication, security, coverage, management, location services, billing, and interoperability. We discuss existing research, the work of standards bodies, and the experience of commercial hotspot providers in these areas, and then describe compelling open research questions that remain. Anand Balachandran has been a member of the research staff at Intel Research, Seattle since October 2003. His research interests include wireless networking systems, wireless Internet, infrastructure and ad-hoc networks, and mobile and ubiquitous computing. He received his Bachelor of Technology degree from the Indian Institute of Technology, Madras in 1995, his Master’s degree from Columbia University, in 1997, and his Ph.D. degree in Computer Science and Engineering from the University of California at San Diego in 2003. Geoffrey M. Voelker is an assistant professor at the University of California at San Diego. His research interests include operating systems, distributed systems, networking, and mobile computing. He received a BS degree in Electrical Engineering and Computer Science from the University of California at Berkeley in 1992, and the M.S. and Ph.D. degrees in Computer Science and Engineering from the University of Washington in 1995 and 2000, respectively. In 2000, he received the first Computing Research Association (CRA) Digital Government Fellowship, and in 2002 he received the Hellman Young Faculty Fellowship at UCSD. Victor Bahl is a Senior Researcher and the Manager of the Networking Group in Microsoft Research. His research interests span a variety of problems in wireless networking. In addition to making many product contributions, he has authored over 65 scientific papers, 44 issued and pending patent applications and several book chapters. He is the co-founder and Chairman of the ACM Special Interest Group in Mobility (SIGMOBILE); the founder and past Editor-in-Chief of ACM Mobile Computing and Communications Review, and the founder and Steering Committee Chair of ACM/USENIX Mobile Systems Conference (MobiSys); He has served on the editorial board of IEEE Journal on Selected Areas in Communications, and is currently serving on the editorial boards of Elsevier’s Adhoc Networking Journal, Kulwer’s Telecommunications Systems Journal, and ACM’s Wireless Networking Journal. He has served as a guest editor for several IEEE and ACM journals and on networking review panels organized by the National Science Foundation (NSF), the National Research Council (NRC) and European Union’s COST. He has served as the General Chairman, Program Chair and Steering Committee member of several IEEE and ACM conferences and on the Technical Program Committee of over 45 international conferences and workshops. He is the recipient of Digital’s Doctoral Engineering Award (1994) and ACM SIGMOBILE’s Distinguished Service Award (2001). He is a Fellow of the ACM, a Senior Member of the IEEE and a past president of the electrical engineering honor society Eta kappa Nu-Zeta Pi. Dr. Bahl received his Ph. D in Computer Systems Engineering from the University of Massachusetts Amherst.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

18.
Bluetooth is a most promising technology for the wireless personal area networks and its specification describes how to build a piconet. Though the construction of scatternet from the piconets is left out in the specification, some of the existing solutions discuss the scatternet formation issues and routing schemes. Routing in a scatternet, that has more number of hops and relay nodes increases the difficulties of scheduling and consumes the bandwidth and power resources and thereby impacts on the performance of the entire network. In this paper, a novel routing protocol (LARP) for the Bluetooth scatternet is proposed, which reduces the hop counts between the source and the destination and reconstructs the routes dynamically using the location information of the Bluetooth devices. Besides, a hybrid location-aware routing protocol (HLARP) is proposed to construct the shortest routes among the devices with or without having the location information and degenerate the routing schemes without having any location information. Experimental results show that our protocols are efficient enough to construct the shortest routing paths and to minimize the transmission delay, bandwidth and power consumption as compared to the other protocols that we have considered. Chih-Yung Chang received the Ph.D. degree in Computer Science and Information Engineering from National Central University, Taiwan, in 1995. He joined the faculty of the Department of Computer and Information Science at Aletheia University, Taiwan, as an Assistant Professor in 1997. He was the Chair of the Department of Computer and Information Science, Aletheia University, from August 2000 to July 2002. He is currently an Associate Professor of Department of Computer Science and Information Engineering at Tamkang University, Taiwan. Dr. Chang served as an Associate Guest Editor of Journal of Internet Technology (JIT, 2004), Journal of Mobile Multimedia (JMM, 2005), and a member of Editorial Board of Tamsui Oxford Journal of Mathematical Sciences (2001--2005). He was an Area Chair of IEEE AINA'2005, Vice Chair of IEEE WisCom 2005 and EUC 2005, Track Chair (Learning Technology in Education Track) of IEEE ITRE'2005, Program Co-Chair of MNSA'2005, Workshop Co-Chair of INA'2005, MSEAT'2003, MSEAT'2004, Publication Chair of MSEAT'2005, and the Program Committee Member of USW'2005, WASN'2005, and the 11th Mobile Computing Workshop. Dr. Chang is a member of the IEEE Computer Society, Communication Society and IEICE society. His current research interests include wireless sensor networks, mobile learning, Bluetooth radio systems, Ad Hoc wireless networks, and mobile computing. Prasan Kumar Sahoo got his Master degree in Mathematics from Utkal University, India. He did his M.Tech. degree in Computer Science from Indian Institute of Technology (IIT), Kharagpur, India and received his Ph.D in Mathematics from Utkal University, India in April, 2002. He joined in the Software Research Center, National Central University, Taiwan and currently working as an Assistant Professor, in the department of Information Management, Vanung University, Taiwan, since 2003. He was the Program Committee Member of MSEAT'2004, MSEAT'2005, WASA'2006, and IEEE AHUC'2006. His research interests include the coverage problems, modeling and performance analysis of wireless sensor network and Bluetooth technology. Shih-Chieh Lee received the B.S. degree in Computer Science and Information Engineering from Tamkang University, Taiwan, in 1997. Since 2003 he has been a Ph.D. Students in Department of Computer Science and Information Engineering, Tamkang University. His research interests are wireless sensor networks, Ad Hoc wireless networks, and mobile/wireless computing.  相似文献   

19.
Recent advances on wireless technology are enabling the design and deployment of multiservice wireless networks. In order to be able to meet the QoS requirements of the various applications, it is essential to deploy QoS provisioning mechanisms. In this paper, we present a QoS framework to support various types of services in a wireless networking environment. Under this QoS framework, we propose various resource request mechanisms. We carry out a comparative study of the proposed schemes. Our simulation results show the effectiveness of the mechanisms when supporting different services, such as video, voice, best-effort and background traffic. Francisco M. Delicado This author received his M.Sc. degree in Physics (Electronics and Computer Science) from the University Complutense of Madrid, Madrid, Spain in 1995. He is currently a Ph.D. degree student in the Department of Computer Engineering at the University of Castilla-La Mancha. His research interests include high-performance networks, specially wireless LAN, QoS over WLAN, video compression, video transmission and error-resilient protocol architectures. Pedro Cuenca This author received his M.Sc. degree in Physics (Electronics and Computer Science, award extraordinary) from the University of Valencia in 1994. He got his Ph.D. degree in Computer Engineering in 1999 from the Polytechnic University of Valencia, Spain. In 1995 he joined the Department de Computer Engineering at the University of Castilla-La Mancha. He is currently an Associate Professor of Communications and Computer Networks. He has also been a visiting researcher at The Nottingham Trent University, Nottingham (England) and at the Multimedia Communications Research Laboratory, University of Ottawa (Canada). His research topics are centered in the area of high-performance networks, wireless LAN, video compression, QoS video transmission and error-resilient protocol architectures. He has served in the organization of International Conferences as Session Chair. He has been reviewer for several Journals and for several International Conferences. He is a member of the IFIP 6.8 Working Group and a member of the IEEE. Luis Orozco-Barbosa This author received the B.Sc. degree in electrical and computer engineering from Universidad Autonoma Metropolitana, Mexico, in 1979, the Diplome d'Etudes Approfondies from ENSIMAG, France, in 1984 and the Doctorat de l'Universite from Universite Pierre et Marie Curie, France, in 1987, both in computer science. From 1991 to 2002, he was a Faculty Member of Computer Engineering at the School of Information Technology and Engineering (SITE), University of Ottawa, Canada. In 2002, he joined the Department of Computer Engineering at Universidad de Castilla La Mancha (SPAIN) where he is currently Director of the Albacete Research Institute of Informatics. He has published over 180 papers in international Journals and Conferences on computer networks and performance evaluation. His current research interests include Internet protocols, video communications, wireless networks, traffic modeling and performance evaluation. He is a member of the IEEE. Antonio Garrido This author received the degree in physics (electronics and computer science) and the Ph.D. degrees from the University of Granada, Spain, in 1986 and University of Valencia, Spain, in 1991, respectively. In 1986, he joined the Department of Computer Engineering at the University of Castilla-La Mancha, where he is currently a Full Professor of Computer Architecture and Technology and Dean of the EscuelaPolitecnica Superior de Albacete (School of Computer Engineering). His research interests include high-performance networks, telemedicine, video compression, and video transmission. He has published over 40 papers in international journals conferences on performance evaluation of parallel computer and communications systems and compression and transmission in high-speed networks. He has led several research projects in telemedicine, computer networks and advanced computer system architectures.  相似文献   

20.
In this paper, we address the problem of user-class based service differentiation in CDMA networks. Users are categorized into three classes who get differentiated services based on their expected quality of service (QoS) from the service provider and the price they are willing to pay. We adopt a game theoretic approach for allocating resources through a two-step process. During a service admission, resource distribution is determined for each class. Then, the resource allocated to each class is distributed among the active users in that class. We devise a utility function for the providers which considers the expected revenue and the probability of users leaving their service provider if they are not satisfied with the service. Our model demonstrates how power can be controlled in a CDMA network to differentiate the service quality. Also, we show the impact of admitting high paying users on other users. Mainak Chatterjee received his Ph.D. from the department of Computer Science and Engineering at The University of Texas at Arlington in 2002. Prior to that, he completed his B.Sc. with Physics (Hons) from the University of Calcutta in 1994 and M.E. in Electrical Communication Engineering from the Indian Institute of Science, Bangalore, in 1998. He is currently an Assistant Professor in the department of Electrical and Computer Engineering at the University of Central Florida. His research interests include economic issues in wireless networks, applied game theory, resource management and quality-of-service provisioning, ad hoc and sensor networks, CDMA data networking, and link layer protocols. He serves on the executive and technical program committee of several international conferences. Haitao Lin received the BE degree in radio engineering from Southeast University, Nanjing, China, in 1996, the MS degree in computer applications from the Beijing University of Posts and Telecommunications, Beijing, China, in 2000, and Ph.D. in Computer Science and Engineering from The University of Texas at Arlington in 2004. He is currently with Converged Multimedia Services System Engineering at Nortel, Richardson, Texas. His research interests include wireless network performance evaluation and enhancement, wireless link adaptation, wireless network resource management, and applied game theory. Sajal K. Das received B.S. degree in 1983 from Calcutta University, M.S. degree in 1984 from Indian Institute of Science, Bangalore, and Ph.D. degree in 1988 from University of Central Florida, Orlando, all in Computer Science. He is currently a Professor of Computer Science and Engineering and also the Founding Director of the Center for Research in Wireless Mobility and Networking (CReWMaN) at the University of Texas at Arlington (UTA). Prior to 1999, he was a professor of Computer Science at the University of North Texas (UNT), Denton where he founded the Center for Research in Wireless Computing (CReW) in 1997, and also served as the Director of the Center for Research in Parallel and Distributed Computing (CRPDC) during 1995–97. Dr. Das is a recipient of the UNT Student Association's Honor Professor Award in 1991 and 1997 for best teaching and scholarly research; UNT's Developing Scholars Award in 1996 for outstanding research; UTA's Outstanding Faculty Research Award in Computer Science in 2001 and 2003; and the UTA College of Engineering Research Excellence Award in 2003. He is also frequently invited as a keynote speaker at international conferences and symposia. Dr. Das' current research interests include mobile wireless communications, resource and mobility management in wireless networks, mobile and pervasive computing, wireless multimedia, ad hoc and sensor networks, mobile internet architectures and protocols, distributed and grid computing, performance modeling and simulation. He has published over 350 research papers in these areas in international journals and conferences, directed numerous industry and government funded projects, and holds five US patents in wireless mobile networks. He received four Best Paper Awards in the ACM MobiCom'99, ICOIN'01, ACM MSWiM'00, and ACM/IEEE PADS'97. He as the Editor in Chief of the Pervasive and Mobile Computing (PMC) journal and also as an Associate Editor of IEEE Transactions on Mobile Computing, ACM/Kluwer Wireless Networks, Parallel Processing Letters, Journal of Parallel, Distributed and Emerging Systems. He served as General Chair of IEEE WoWMoM'05, PerCom'04, IWDC'04, MASCOTS'02, ACM WoWMoM'00-02; General Vice Chair of IEEE PerCom'03, ACM MobiCom'00 and IEEE HiPC'00-01; Program Chair of IWDC'02, WoWMoM'98-99; TPC Vice Chair of ICPADS'02; and as TPC member of numerous IEEE and ACM conferences. He is Vice Chair of the IEEE Computer Society's TCPP and TCCC Executive Committees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号