首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photovoltaic (PV) power system performance depends on local irradiance conditions. PV systems are sometimes subject to partial shading, which may produce a nonideal characteristic curve, presenting true and local power maxima in the P -I curve. Traditional maximum power point tracking (MPPT) algorithms can converge to local maximum, which is not the true MPP. In order to solve the problem, this paper investigates the effects of nonuniform solar irradiance distribution on a PV source. An MPPT algorithm that is able to optimize the source instantaneous operating power under nonuniform irradiance is proposed. The ability of the algorithm and its increased performance with respect to traditional algorithms are evaluated by means of experimental tests performed on a real PV power system.  相似文献   

2.
Environmental conditions, such as temperature, non‐uniform irradiation, and solar shading, deeply affect the characteristics of photovoltaic (PV) modules in PV‐assisted generation systems. Several local maximum power points (MPPs) are found in the power–voltage curve of PV systems constructed by series/parallel‐connected PV modules under partially shaded conditions. The characteristics of PV systems change unpredictably when multiple MPPs occur, so the actual MPP tracking (MPPT) becomes a difficult task. Conventional MPPT methods for the PV systems under partially shaded conditions cannot quickly find the actual MPP such that the optimal utilization of PV systems cannot be achieved. Based on the p–n junction semiconductor theory, we develop a multipoint direct‐estimation (MPDE) method to directly estimate the multiple MPPs of the PV systems under partially shaded conditions and to cope with the mentioned difficulties. Using the proposed MPDE method, the multiple MPPs of the PV systems under partially shaded conditions can be directly determined from their irradiated current–voltage and power–voltage characteristic curves. The performances of the proposed MPDE method are evaluated by examining the characteristics of multiple MPPs of PV systems with respect to different shading strengths and numbers of the shaded PV modules and also tested using the field data. The experimental results demonstrate that the proposed MPDE method can simply and accurately estimate the multiple MPPs of the PV systems under partially shaded conditions. The optimization of MPP control models and the MPPT for PV systems could be achieved promisingly by applying the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Partial shading has been recognized as a major cause of energy losses in photovoltaic (PV) power generators. Partial shading has severe effects on the electrical characteristics of the PV power generator, because it causes multiple maximum power points (MPPs) to the power‐voltage curve. Multiple maxima complicate MPP tracking, and the tracking algorithms are often unable to detect the global maximum. Considerable amount of available electrical energy may be lost, when a local MPP with low power is tracked instead of the global MPP. In this paper, the electrical characteristics of series‐connected silicon‐based PV modules under various partial shading conditions are studied by using a Matlab/Simulink simulation model. The simulation model consists of 18 series‐connected PV modules, corresponding to a single‐phase grid‐connected PV power generator. The validity of the simulation model has been verified by experimental measurements. The voltage and power characteristics of the PV power generator have been investigated under various system shading and shading strength conditions. The results can be utilized to develop new MPP tracking algorithms and in designing, for example, building integrated PV power generators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Photovoltaic (PV) power has been successfully used for over five decades. Whether in dc or ac form, photovoltaic cells provide power for systems in many applications on earth and space. Its principles of operation are therefore well understood, and circuit equivalents have been developed that accurately model the nonlinear relationship between the current and voltage of a photovoltaic cell. With the improved efficiencies of power electronics converters, it is now possible to operate photovoltaic system about its maximum power point (MPP) in order to improve the overall system efficiency. Hitherto, this problem has been tackled using tracking (MPPT) algorithms that iteratively find the point of maximum power and respond to changes in solar irradiance accordingly. A mathematical manipulation that uses the mean value theorem is presented here that provides the analytic solution of a point in a close neighborhood of the MPP. It is thoroughly proved that this point is enclosed in a ball of small radius that also contains the MPP and therefore can practically be considered as the MPP. Since the solution is analytic, no iterative schemes are necessary, and only a periodic measurement is required to adjust to changes in solar irradiance. A circuit is implemented that shows the validity of the theory and the accuracy of the solution.  相似文献   

5.
Achieving the maximum power output from photovoltaic (PV) modules is indispensable for the operation of grid‐connected PV power systems under varied atmospheric conditions. In recent years, the study of PV energy for different applications has attracted more and more attention because solar energy is clean and renewable. We propose an efficient direct‐prediction method to enhance the utilization efficiency of thin film PV modules by tackling the problem of tracking time and overcoming the difficulty of calculation. The proposed method is based on the p–n junction recombination mechanism and can be applied to all kinds of PV modules. Its performance is not influenced by weather conditions such as illumination or temperature. The experimental results show that the proposed method provides high‐accuracy estimation of the maximum power point (MPP) for thin film PV modules with an average error of 1.68% and 1.65% under various irradiation intensities and temperatures, respectively. The experimental results confirm that the proposed method can simply and accurately estimate the MPP for thin film PV modules under various irradiation intensities and temperatures. In future, the proposed method will be used to shed light on the optimization of the MPP tracking control model in PV systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
最大功率跟踪(MPPT)是太阳能光伏发电的重要组成部分,依靠最大功率跟踪可使光伏电池工作在最大功率点(MPP)附近,提高太阳能的利用率.在分析光伏电池的数学模型的基础上,选用Boost电路作为DC/DC变换来搭建仿真模型;针对传统的定步长扰动观测法存在的震荡和误判现象,提出一种改进的扰动观测法,并在Matlab/Simulink环境下进行了仿真.与定步长的扰动观测法的仿真结果进行对比,表明该算法的响应速度更加迅速;在外界环境发生变化时,该算法能够快速做出判断,准确地跟踪到光伏电池的最大功率点.  相似文献   

7.
Utilizing the light reflected by simple means onto the rear surface of solar cells is an effective way of lowering the cost of solar electricity, since more power is generated per cell. Innovative bifacial photovoltaic modules have been introduced, such as a multi‐functional bifacial PV sun‐shading element which is based on bifacially sensitive solar cells in combination with a white semitransparent reflector back sheet. Not only is sunlight collected by its front and rear surface efficiently converted into electricity, but also diffuse glare‐free daylight is provided. Other applications include relatively narrow bifacial modules installed at a certain distance in front of a reflecting background. In all cases power gains of more than 50% can be achieved with little extra cost compared with monofacial modules. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
To increase the efficiency of photovoltaic (PV) systems, maximum power point (MPP) tracking of the solar arrays is needed. Solar arrays output power depends on the solar irradiance and temperature. Also the mismatch phenomenon caused by partial shade will affect the output power of solar systems and lead to the incorrect operation of conventional MPP tracker. Under partially shaded conditions, the solar array power–current characteristic has multiple maximum. This paper presents a maximum power point tracking (MPPT) with particle swarm optimization method for PV systems under partially shaded condition. The performance of the proposed method is compared with perturb and observe (P&O), improved P&O, voltage‐based maximum power point tracking and current‐based maximum power point tracking algorithms, especially, under partially shaded condition. Simulation results confirm that proposed MPPT algorithm with high accuracy can track the peak power point under different insolation, temperature and partially shaded conditions, and it has the best performance in comparison with four mentioned MPPT algorithms. Also under rapidly changing atmospheric conditions, the P&O algorithm is diverged. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
An integrated converter controller with maximum power point (MPP) regulation in 0.35 μm CMOS for photovoltaic (PV) applications is reported. The implemented MPP tracker bases on a perturb and observe algorithm and acquires the information concerning the power flow via an analog processing circuit which is connected at the switched mode converter input respectively the output of the attached PV string of nine cells. There the solar cell current is measured via a very low-ohmic shunt resistor of 1 mΩ and analogously multiplied with the cell voltage. As output the fabricated test chip directly generates a 530 kHz PWM signal for the external switched mode converter. Measurements show that under similar conditions analog MPP tracking of the converter input power improves the robustness with respect to settling times of the power path compared to those topologies at which the power is measured at the converter output. Between 0.4 and 7.5 A photocurrent the chip achieves tracking efficiencies better than 99.5 % while the power consumption is only 750 μW and a very low chip area demand of 0.043 mm2 for the MPP tracking core is achieved.  相似文献   

10.
This paper presents a novel maximum power point tracking (MPPT) method based on the grey wolf optimisation (GWO) technique for photovoltaic (PV) power generation systems. The proposed method utilises previous working duty cycles and their corresponding voltage and current data to compute the instantaneous DC impedance of a PV string. To determine the peak power characteristics of any PV string, the impedance variation of that PV string is used as an efficient shading factor. This shading factor simplifies the calculation of the GWO-MPPT algorithm to obtain multiple peak targets under partial shading conditions. Thus, the efficiency of the proposed power tracking technique can be improved considerably. The effectiveness of this method was validated through both simulation and hardware implementations. Results revealed that the search performance of five iterations of the proposed method was similar to that of ten iterations of a traditional GWO-MPPT method under normal conditions without shading. These results confirm the practicability of the proposed method in various applications.  相似文献   

11.
A substantial increase of photovoltaic (PV) power generators installations has taken place in recent years, due to the increasing efficiency of solar cells as well as the improvements of manufacturing technology of solar panels. These generators are both grid-connected and stand-alone applications. We present an overview of the essential research results. The paper concentrates on the operation and modeling of stand-alone power systems with PV power generators. Systems with PV array-inverter assemblies, operating in the slave-and-master modes, are discussed, and the simulation results obtained using a renewable energy power system modular simulator are presented. These results demonstrate that simulation is an essential step in the system development process and that PV power generators constitute a valuable energy source. They have the ability to balance the energy and supply good power quality. It is demonstrated that when PV array- inverters are operating in the master mode in stand-alone applications, they well perform the task of controlling the voltage and frequency of the power system. The mechanism of switching the master function between the diesel generator and the PV array-inverter assembly in a stand-alone power system is also proposed and analyzed. Finally, some experimental results on a practical system are compared to the simulation results and confirm the usefulness of the proposed approach to the development of renewable energy systems with PV power generators.  相似文献   

12.
Power processing systems will be a key factor of future photovoltaic (PV) applications. They will play a central role in transferring, to the load and/or to the grid, the electric power produced by the high-efficiency PV cells of the next generation. In order to come up the expectations related to the use of solar energy for producing electrical energy, such systems must ensure high efficiency, modularity, and, particularly, high reliability. The goal of this paper is to provide an overview of the open problems related to PV power processing systems and to focus the attention of researchers and industries on present and future challenges in this field.  相似文献   

13.
This paper proposes a method for tracking the maximum power point (MPP) of a photovoltaic (PV) module that exploits the relation existing between the values of module voltage and current at the MPP (MPP locus). Experimental evidence shows that this relation tends to be linear in conditions of high solar irradiation. The analysis of the PV module electrical model allows one to justify this result and to derive a linear approximation of the MPP locus. Based on that, an MPP tracking strategy is devised which presents high effectiveness, low complexity, and the inherent possibility to compensate for temperature variations by periodically sensing the module open circuit voltage. The proposed method is particularly suitable for low-cost PV systems and has been successfully tested in a solar-powered 55-W battery charger circuit.  相似文献   

14.
在外旅游或者没有电源的情况下,便携式光伏发电箱可以实现手机、手电筒、剃须刀等能量补给及夜晚照明。文章主要介绍了光伏发电箱的太阳能发电系统,该系统由光伏电池、蓄电池、控制器、逆变器、数据采集板、上位机等几部分组成;文中对该系统各部分的功能和相互联系进行了分析;重点叙述逆变器的设计,包括电路结构、DSP软件的设计、PWM波形的产生原理;通过数据采集板和上位机可实时监测系统的运行状况,具有一定的市场潜力。  相似文献   

15.
III‐V semiconductors, GaAs and in particular InGaP, are used in many different electronic applications, such as high power and high frequency devices, laser diodes and high brightness LED. Their direct bandgap and high reliability make them ideal candidates for the realisation of high efficiency solar cells: in the past years they have been successfully used as power sources for satellites in space, where they are able to produce electricity from sunlight with an overall efficiency of around 30%. Nowadays, the use of arsenides and phosphides as photovoltaic (PV) devices is confined only to space applications since their price is much higher than conventional Si flat panel modules, the leading PV market technology. But with the introduction of multijunction solar cells capable of operating in high concentration solar light, the area and, therefore, the cost of these cells can be reduced and will eventually find an application and market also on Earth. This article will review the situation of semiconductor solar cell materials, focusing on Si, GaAs, InGaP and multijunction solar cells and will discuss future trends and possibilities of bringing III‐V technology from space to Earth. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
为了提高太阳电池的利用率并降低系统成本,需要采用最大功率跟踪(MPPT)控制策略使光伏阵列获得最大功率输出。在众多的MPPT控制方法中,扰动观察法由于原理简单、易于实现而成为MPPT控制中应用和研究最为广泛的方法之一。但传统的扰动观察法在稳态下由于其固定的扰动步长会在最大功率点(MPP)附近形成振荡,并且当外界环境发生快速变化时会出现误判断的现象。为了克服以上不足,研究者们提出了很多改进方案。文章对这些改进方案进行了综述,这些改进方案主要包括以下三类:变步长的改进方法、改进的新方法以及与其他方法结合的扰动观察法。  相似文献   

17.
The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system–PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42·7 ± 2·5% are described. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The efficiency of photovoltaic (PV) power system is hampered to a large extent when it is shaded even by a fraction. The performance dwindle in PV array due to partial shading is not proportional to the volume of shading, rather it depends on pattern of shading, array configuration, and site where PV panels are installed. Total cross‐tied (TCT) is the proven scheme among all the prevailing interconnection schemes like series, parallel, series–parallel (SP), and bridge linked to negate partial shading impact. This work aims at proposing a new adaptive algorithm to reconfigure the PV array such that it evades the shading effect. Also, it suggests a unique PV panel arrangement for a familiar shading pattern by which the shading prospects are reduced considerably. The proposed work has a clear edge over the TCT method in managing shading, ruling out multiple peaks in output power curve. This technique is highly recommended for constant power loads as the output current is maintained constant, setting aside the varying atmospheric conditions, whereas other reconfiguring techniques do not address this application. The suggested topology is simulated in matlab /Simscape environment for a 3 × 3 PV array and realized in a hardware prototype where a digital signal controller Dspic30f4011 is used to impart the proposed control algorithm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Due to the variation of the maximum power point (MPP) of photovoltaic (PV) generators with solar radiation and temperature, boost DC-DC converters placed between PV modules and inverters in grid-connected PV systems have to be controlled in a variable operating-point condition. In addition, inductor current dynamics changes suddenly when moving from continuous to discontinuous conduction mode. The previous difficulties make the design of reliable and fast control laws for the input voltage of boost converters complicated. The aim of this paper is to propose a control algorithm based on cascaded-loop control. The input voltage is controlled by the outer loop. The inductor current is controlled by an inner loop strategy which is able to perform in mixed conduction mode, owing to the fuzzy switching technique. Simulation and experimental results for a 10-kW boost converter show that the proposed strategy achieves an accurate and robust performance at every operating point, even if the inductor value varies in a wide range; thus, fast MPP tracking techniques can be implemented. An additional advantage is that constant switching frequency is achieved.  相似文献   

20.
Photovoltaic power systems are usually integrated with some specific control algorithms to deliver the maximum possible power. Several maximum power point tracking (MPPT) methods that force the operating point to oscillate have been presented in the past few decades. In the MPPT system, the ideal operation is to determine the maximum power point (MPP) of the photovoltaic (PV) array directly rather than to track it by using the active operation of trial and error, which causes undesirable oscillation around the MPP. Since the output features of a PV cell vary with environment changes in irradiance and temperature from time to time, real-time operation is required to trace the variations of local MPPs in PV power systems. The method of real-time estimation proposed in this paper uses polynomials to demonstrate the power–voltage relationship of PV panels and implements the recursive least-squares method and Newton–Raphson method to identify the voltage of the optimal operating point. The effectiveness of the proposed methods is successfully demonstrated by computer simulations and experimental evaluations of two major types of PV panels, namely: 1) crystalline silicon and 2) copper–indium–diselenide thin film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号