首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jeom Kee Paik 《钢结构》2008,23(9):77-77
作为作者系列研究成果[Paik J K.Ultimate strength of perforated steel plates under edge shear loading.Thin-Walled Structures,2007,45:301-6,Paik J K.Ultimate strength of perforated steel plates under axial compressive loading along short edges.Ships Offshore Struct,2007,2(3):(inpress)]的终结篇,与前期论文在边缘剪力或单轴压力荷载方面进行了对比,目的是研究双轴受压和边缘剪力作用下多孔钢板的极限强度特点,这是船舶和船舶型海洋结构在货物和水压作用下的一个典型受力模式。板的约束考虑为四边简支,中心区域为圆形孔。一系列ANSYS非线性有限元分析中考虑了不同的板尺寸(厚度)。在有限元分析基础上,推导出组合荷载下多孔板的极限强度交互关系公式,可用于可靠性分析或规范中极限强度的预测。  相似文献   

2.
Ultimate strength of perforated steel plates under edge shear loading   总被引:1,自引:1,他引:1  
Jeom Kee Paik   《Thin》2007,45(3):301-306
The aim of the present study is to investigate the ultimate strength characteristics of perforated steel plates under edge shear loading, which is a primary action type arising from cargo weight and water pressure in ships and ship-shaped offshore structures. The plates are considered to be simply supported along all (four) edges and kept straight. The cutout is circular and located at the center of the plate. A series of ANSYS nonlinear finite element analyses (FEA) are undertaken with varying the cutout size (diameter) as well as plate dimensions (plate aspect ratio and thickness). By the regression analysis of the FEA results obtained, a closed-form empirical formula for predicting the ultimate shear strength of perforated plates, which can be useful for first-cut strength estimations in reliability analyses or code calibrations, is derived. The accuracy of the ultimate strength formula developed is verified by a comparison with more refined nonlinear FEA results.  相似文献   

3.
Jeom Kee Paik  Man Seung Lee 《Thin》2005,43(3):375-410
In the earlier publications [Paik JK, Thayamballi AK, Lee SK, Kang SJ. A semi-analytical method for the elastic-plastic large deflection analysis of welded steel or aluminium plating under combined in-plane and lateral pressure loads. Thin-Walled Struct 2001;39;125–52; Paik JK, Thayamballi AK. Ultimate limit state design of steel-plated structures. Chichester: Wiley; January 2003], the author presented a semi-analytical method for the elastic–plastic large deflection analysis of unstiffened plates under biaxial loads, edge shear, biaxial in-plane bending and out-of-plane (lateral) pressure loads until the ultimate strength is reached. In the present paper, a similar method is applied to stiffened panels subjected to the same type of loading. The effect of initial imperfections in the form of initial deflection and welding residual stresses is accounted for in the calculations. The validity of the developed method is demonstrated by comparing with existing theoretical and numerical results where relevant. The present theory can be useful for ultimate strength analysis of plates and stiffened panels made of steel or aluminium alloys.  相似文献   

4.
In addition to corrosion, fatigue cracking is another important factor of age related structural degradation, which has been a primary source of costly repair work of aging steel structures. Cracking damage has been found in welded joints and local areas of stress concentrations such as at the weld intersections of longitudinals, frames and girders. Fatigue cracking has usually been dealt with as a matter under cyclic loading, but it is also important for residual strength assessment under monotonic extreme loading, because fatigue cracking reduces the ultimate strength significantly under certain circumstances.In this paper, an experimental and numerical study on the ultimate strength of cracked steel plate elements subjected to axial compressive or tensile loads is carried out. The ultimate strength reduction characteristics of plate elements due to cracking damage are investigated with varying size and location of the cracking damage, both experimentally and numerically. Ultimate strength tests on cracked steel plates under axial tension and cracked box type steel structure models under axial compression are undertaken. A series of ANSYS nonlinear finite element analyses for cracked plate elements are performed. Based on the experimental and numerical results obtained from the present study, theoretical models for predicting the ultimate strength of cracked plate elements under axial compression or tension are developed. The results of the experiments and numerical computations obtained are documented. The insights developed will be very useful for the ultimate limit state based risk or reliability assessment of aging steel plated structures with cracking damage.  相似文献   

5.
Ultimate shear strength of plate elements with pit corrosion wastage   总被引:1,自引:0,他引:1  
The aim of the present paper is to investigate the ultimate strength characteristics of steel plate elements with pit corrosion wastage and under in-plane shear loads. A series of the ANSYS nonlinear finite element analyses for plate elements under in-plane shear loads are carried out, varying the degree of pit corrosion intensity and the plate geometric properties. Closed-form design formulae for the ultimate strength of pitted plates under edge shear, which are essentially needed for the ultimate limit state based risk or reliability assessment of corroded structures, are derived by the regression analysis of the computed results. The insights developed from the present study will be very useful for damage tolerant design of plated structures with pit corrosion wastage.  相似文献   

6.
Jeom Kee Paik   《Thin》2005,43(9):1475-1492
The aims of this paper are to investigate the ultimate shear strength reduction characteristics of steel plates due to local impacts, and also to develop the ultimate shear strength design formulae of dented steel plates. The ANSYS nonlinear finite element code is used to investigate the effects of shape, size (depth, diameter), and location of the denting on the ultimate strength behavior of simply supported steel plates under edge shear loads. A closed-form expression for predicting the ultimate shear strength of dented steel plates is derived by the regression analysis based on the computed results. The results and insights developed from the present study will be very useful for damage tolerant design of steel plated structures with local denting.  相似文献   

7.
This paper focuses on the cutout-strengthening of perforated steel plates subjected to uniaxial compressive loads. The square plates considered each has a centrally placed circular hole and four simply supported edges in the out-of-plane direction. Four types of stiffeners named ringed stiffener (RS), flat stiffener (FS), longitudinal stiffener (LS) and transverse stiffener (TS) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behaviors of strengthened and unstrengthened perforated plates. The results show that the strengthened perforated plates have higher buckling strengths than those of the unstrengthened ones, while the elevations in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types (i.e., RS, FS, LS and TS) as well as plate geometric parameters (i.e., a plate slenderness ratio and a hole diameter ratio). Furthermore, comparisons of strengthening efficiency considering the variations of buckling stress with stiffener weight are carried out, and recommendations on the most efficient cutout-strengthening methods for the uniaxially compressed perforated square plates with centric circular holes are proposed.  相似文献   

8.
Ultimate shear strength of steel plate shear walls, SPSW, was conventionally computed as the sum of base shear supported by in-fill plate and boundary frame elements. The base shear supported by the in-fill plate was computed assuming that it was fully yielded after buckling whereas the base shear supported by the boundary frame elements was computed by plastic analysis assuming uniform yielding mechanism. In this paper the ultimate shear strength of SPSW was investigated by the finite element method. A detailed three-dimensional finite element model was established using ANSYS software at which the in-fill plate and the boundary frame elements were modeled using finite strain iso-parametric shell elements. The analysis included material and geometric non-linearities. Numerical results obtained from cyclic and pushover loading of SPSWs were verified by comparison to test results published in the literature. A comprehensive parametric analysis was conducted to assess the effect of geometric and material parameters of the wall on its ultimate shear strength. Discrepancies between numerical results and conventional theory were attributed to interaction of in-fill plate and boundary frame elements at ultimate load. When the flexural rigidity of boundary frame elements decreased, the in-fill plate did not achieve full yield strength. On the other hand, the base shear supported by boundary frame elements increased when thicker in-fill plates were utilized. Numerical results were used to update the theoretical expression of ultimate shear strength of SPSWs. The proposed expression was assessed by comparison to test results published in the literature.  相似文献   

9.
This paper uses the large deflection orthotropic plate approach to develop the ultimate strength formulations for steel stiffened panels under combined biaxial compression/tension and lateral pressure loads, considering the overall (grillage) buckling collapse mode. The object panel has a number of one-sided small stiffeners in either one or both orthogonal directions. The stiffened panel is then modeled as an equivalent orthotropic plate, for which the various elastic constants characterizing structural orthotropy are determined in a consistent systematic manner using classical theory of elasticity. The panel edges are considered to be simply supported. The influence of initial deflections is taken into account. The membrane stress distribution inside the panel under combined uniaxial loading (in either longitudinal or transverse direction) and lateral pressure is analyzed by solving the nonlinear governing differential equations of large deflection orthotropic plate theory. It is presumed that the panel collapses when the most highly stressed boundary location yields, resulting in closed-form expressions for the ultimate strength of the stiffened panel. Based on the insights previously developed through numerical studies, the panel ultimate strength interaction formulation between biaxial loads, with lateral pressure regarded as a secondary load component is then proposed as a relevant combination of the two sets of panel ultimate strength formulations, i.e. one for combined longitudinal axial load and lateral pressure and the other for combined transverse axial load and lateral pressure. The validity of the proposed ultimate strength formulations is verified by a comparison with nonlinear finite element and other numerical solutions.  相似文献   

10.
Design formula for axially compressed perforated plates   总被引:1,自引:0,他引:1  
This paper is concerned with post-buckling behaviour and the ultimate load capacity of perforated plates with different boundary conditions and subjected to uniaxial or biaxial compression. Plates were analysed using the finite element method (FEM), and extensive studies were carried out covering parameters such as plate slenderness, opening size, boundary conditions and the nature of loading. A design formula to determine the ultimate load carrying capacity was established based on a best-fit regression analysis using the results from the finite element analyses. The accuracy of the proposed formula was established by comparison with experimental values of ultimate capacity and similar finite element values. Ultimate load values are also presented in the form of charts for various values of plate slenderness and opening size.  相似文献   

11.
The aim of the present paper is to develop a semi-analytical method which can quickly and accurately compute the elastic–plastic large deflection response of welded steel or aluminum plating under a combination of biaxial compression/tension, biaxial in-plane bending, edge shear and lateral pressure loads, until the ultimate limit state is reached. The post-weld initial imperfections (i.e. initial deflection and residual stresses) are included in the method as parameters of influence. It is assumed that the plating is simply supported at all (four) edges which are kept straight. A unique feature of the developed method is that geometric nonlinearity associated with large deflection response of plating under combined loads is treated by analytically solving the nonlinear governing differential equations of the elastic large deflection plate theory, while material nonlinearity due to plasticity is dealt with implicitly by a numerical procedure. This approach reduces the magnitude of numerical computations, resulting in a saving of modeling effort and computing time. As another contribution, this paper investigates and discusses the ultimate strength characteristics of plating, by varying the plate properties and load combinations, based on elastic–plastic large deflection analysis using the developed method.  相似文献   

12.
提出一种新型的两侧边开缝的钢板剪力墙,并对其两侧边有无加劲肋的两种结构形式进行有限元弹性屈曲分析,分别讨论其临界屈曲荷栽和屈曲模态。对两侧无加劲肋的钢板剪力墙,给出用于其设计的屈曲系数公式,对两侧有加劲肋的钢板剪力墙给出具有参考价值的设计建议。  相似文献   

13.
Jeom Kee Paik  Jung Kwan Seo 《Thin》2009,47(8-9):998-1007
The present paper (Part II) is a sequel to the previous paper (Part I) [Paik JK, Seo JK. Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions—Part I: Plate elements. Thin-Walled Struct 2008, this issue, doi:10.1016/j.tws.2008.08.005.] on the application of nonlinear finite element methods for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions. In contrast to Part I dealing with plate elements, the present paper (Part II) treats stiffened panels surrounded by strong support members such as longitudinal girders and transverse frames. In similar to Part I, some important factors of influence such as structural dimensions, initial imperfections, loading types and computational techniques in association with ultimate limit states are studied. Some useful insights in terms of nonlinear finite element method modeling are developed using ANSYS code together with the ALPS/ULSAP semi-analytical method, the latter being for the purpose of a comparison.  相似文献   

14.
对国产轧制H型钢截面构件进行了轴心受压承载力的理论研究。通过有限元方法 ,对国产轧制H型钢轴心受压构件的极限承载力进行了弹塑性和几何非线性的有限单元法理论分析 ,同时考虑了热轧型钢的残余应力和构件的初始缺陷。计算了 114根国产轧制H型钢轴心受压构件的极限承载力 ,得出国产轧制H型钢轴心受压构件极限承载力的主要公式。提出了便于设计人员应用的轴心受压修正公式。  相似文献   

15.
This paper describes the study of the low-yield-point (LYP) steel plate shear walls under in-plane load. In the LYP steel plate shear wall system, LYP steel was selected for the steel plate wall while the boundary frame was constructed by the high strength structural steel. A series of experimental studies examined the inelastic shear buckling behavior of the LYP steel plate wall under monotonic in-plane load. The effects of width-to-thickness ratio on the shear buckling of LYP steel plates were examined. The stiffness, strength, deformation, and energy dissipation characteristics were investigated by performing cyclic loading tests on the multistorey LYP steel plate shear walls. Excellent deformation and energy dissipation capacity were obtained for all specimens tested. The LYP steel plate shear wall system is able to exceed 5% of storey drift angle under lateral force.  相似文献   

16.
This work presents an assessment of the ultimate compressive strength of damaged steel plates with a local dent. Extensive non-linear finite element analyses are performed, where three groups of analyses are considered. In the first group, the effect of the dent orientation (longitudinal and transverse) is studied for three plate thicknesses. For the second group, the direction of the dent depth (upward and downward) with respect to the global initial imperfection is explored. In the third group, the variation of the dent size for several plate thicknesses and its influence on ultimate compressive strength is investigated. The post-collapse behaviours are discussed and the inflection plate slenderness with and without dent is observed, at which the behaviour of the plate changed. A certain dent breadth to the plate breadth ratio is established, revealing the different plate response. Based on the performed analyses, a generalised expression of the ultimate strength reduction factor due to dent is developed.  相似文献   

17.
提出计算高温和局部荷载作用下短粗热轧钢板的极限强度的分析模型。该局部荷载可能出现在火灾中钢框架结构梁柱连接的受压区,由集中荷载所产生。建模中假定翼缘上的理想塑性铰会导致腹板屈服,计算没有考虑板的局部屈曲。根据温度区域和连接受压区的长度提出两种可能的失效机制,这与周边温度升高时构件的失效屈服不同。基于本文提出的分析模型,对一个典型连接件进行参数研究,归纳不同的热梯度和局部荷载作用长度下腹板极限强度的变化。分析结果表明:在对钢结构进行防火设计时,必须考虑到连接件在高温下的反应,才能提高建模的准确性。  相似文献   

18.
《钢结构》2012,(9):87
同心支撑框架被广泛用于钢结构房屋的抗震设计中。在地震激励下,同心支撑框架的支撑会承受循环拉压荷载。由于支撑的屈曲,其抗压强度通常低于抗拉强度,这可能会降低支撑框架的抗震性能。该文对采用弱扣板强支撑的设计理念进行了验证。扣板选用低屈服点钢(LYP),从而使设计的扣板在支撑屈曲前发生屈服。低屈服点钢的屈服强度很低,但其延性很好。通过一系列试验验证循环荷载作用下低屈服点钢扣板的性能。研究发现,在低屈服点钢扣板上增加槽型约束(STR)可以大大提高其抗震性能。在拉压荷载作用下,有槽型约束的低屈服点钢扣板可以提供类似大小的强度。扣板的耗能能力同样得到提高。基于此研究成果,给出低屈服点钢扣板的一些设计建议。  相似文献   

19.
The corrugated steel plate shear walls have recently been proposed to address the seismic issues associated with simple steel plate shear walls; however, stiffness, strength, and ductility of the corrugated shear walls are significantly affected by varying the corrugation geometry under seismic loading. The present study investigates steel shear walls’ models with corrugated or simple infill plates subjected to monotonic and cyclic loads. The performance of the corrugated steel plate is evaluated and then compared to that of the simple steel plates by evaluating the damping ratios and energy dissipation capability. The effect of corrugation profile angle, the existence of an opening, and the corrugation subpanel length are numerically investigated after validation of the finite element modeling methodology. The results demonstrate that incorporating corrugated plates would lead to better seismic damping ratios, specifically in the case of opening existence inside of the infill plate. Specifically, the corrugation angle of 30° decreases the ultimate strength, while increasing the initial stiffness and ductility. In addition, the subpanel length of 100 mm is found to be able to improve the overall performance of shear wall by providing each subpanel appropriate support for the adjacent subpanel, leading to a sufficient buckling resistance performance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号