首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
加压下填料塔中液相轴向反混的研究   总被引:2,自引:0,他引:2  
Liquid phase axial mixing was measured with the tracer technique in a packed column with inner diameter of 0.15m,in which the structured packing,Mellapak 350Y,was installed.Tap water as the liquid phase flowed down through the column and stagnant gas was at elevated pressure ranging from atmospheric to 2.0MPa.The model parameters of Bo andθwere estimated with the least square method in the time domain.As liquid flow rate was increased,the liquid axial mixing decreased.under our experimental conditions,the effect of pressure on Bo number on single liquid phase was negligible,and eddy diffusion was believed to be the primary cause of axial mixing in liquid phase.  相似文献   

2.
A mathematical model for a bubble column slurry reactor is presented for dimethyl ether synthesis from syngas. Methanol synthesis from carbon monoxide and carbon dioxide by hydrogenation and the methanol dehydration are considered as independent reactions, in which methanol, dimethyl ether and carbon dioxide are the key components. In this model, the gas phase is considered to be in plug flow and the liquid phase to be in partly back mixing with axial distribution of solid catalyst. The simulation results show that the axial dispersion of solid catalysts, the operational height of the slurry phase in the bubble column slurry reactor, and the reaction results are influenced by the reaction temperature and pressure, which are the basic data for the scale-up of reactor.  相似文献   

3.
气升式内环流反应器内局部气含率径向分布   总被引:2,自引:2,他引:0       下载免费PDF全文
张文晖  李鑫钢 《化工学报》2010,61(5):1118-1122
The local gas holdup profiles in an internal-loop airlift reactor were studied experimentally by using dual electrical conductivity probe under different conditions,including superficial velocity,surface tension and liquid viscosity.The results showed that the radial gas holdup profile has a parabolic shape,which was consistent with the empirical model of Luo.Local gas holdup distribution parameters were obviously influenced by flow regime and almost remained unchanged in the same flow regime.In the gas distributor region,the profiles were steeper in the homogenous flow regime than in the heterogeneous flow regime.However,in the stable region,there was an inverse change trend in two flow regimes.The increase of surface tension,superficial velocity and liquid viscosity made the profile of local gas holdup steeper in two flow regimes.  相似文献   

4.
Experiments and simulations were conducted for bubble columns with diameter of 0.2 m(180 mm i.d.), 0.5 m(476 mm i.d.) and 0.8 m(760 mm i.d.) at high superficial gas velocities(0.12–0.62 m·s-1) and high solid concentrations(0–30 vol%). Radial profiles of time-averaged gas holdup, axial liquid velocity, and turbulent kinetic energy were measured by using in-house developed conductivity probes and Pavlov tubes. Effects of column diameter, superficial gas velocity, and solid concentration were investigated in a wide range of operating conditions. Experimental results indicated that the average gas holdup remarkably increases with superficial gas velocity, and the radial profiles of investigated flow properties become steeper at high superficial gas velocities. The axial liquid velocities significantly increase with the growth of the column size, whereas the gas holdup was slightly affected. The presence of solid in bubble columns would inhibit the breakage of bubbles, which results in an increase in bubble rise velocity and a decrease in gas holdup, but time-averaged axial liquid velocities remain almost the same as that of the hollow column. Furthermore, a 2-D axisymmetric k–ε model was used to simulate heterogeneous bubbly flow using commercial code FLUENT 6.2. The lateral lift force and the turbulent diffusion force were introduced for the determination of gas holdup profiles and the effects of solid concentration were considered as the variation of average bubble diameter in the model. Results predicted by the CFD simulation showed good agreement with experimental data.  相似文献   

5.
Local hydrodynamics of a gas–liquid–solid system,such as bubble circulation regime,gas holdup,liquid velocity and axial profile of solid concentration,are studied in a two-stage internal loop airlift reactor.Empirical correlations for gas holdup and liquid velocity are proposed to ease the reactor design and scale-up.Different bubble circulation regimes were displayed in the first(lower) and second(upper) stages.Increasing superficial gas velocity and solid loading can promote regime transition of the second stage,and the gas holdup of the second stage is higher than that of the lower stage.In addition,the effects of solid loading on bubble behaviour are experimentally investigated for each stage.It is found that bubble size in the downcomer decreases with the presence of solid particles,and bubble size distribution widens under higher superficial gas velocity and lower solid loading.  相似文献   

6.
A model for a bubble column slurry reactor is developed based on the experiment of Rhenpreuszen-Koppers demonstration plant for slurry phase Fischer-Tropsch synthesis reported by Koelble et al. This model is applicable to the operation in the churn-turbulent regime and incorporates the information on the bubble size. The axial dispersion model is adopted to describe the flow characteristics of the Fischer-Tropsch slurry reactor. With the model developed, simulations are performed to identify the steady state behavior of a Fischer-Tropsch slurry reactor of commercial size. Predictions of the two-bubble class model is compared with that of the conventional single- bubble class model. The results show that under a variety of conditions, the two-bubble class model gives results different from those for the single-bubble class model.  相似文献   

7.
The local gas-phase flow characteristics such as local gas holdup (εg), local bubble velocity (Vb) and local bubble mean diameter (db) at a specified point in a gas-liquid-solid three-phase reversed flow jet loop reactor was experimentally investigated by a five-point conductivity probe. The effects of gas jet flow rate, liquid jet flow rate, solid loading, nozzle diameter and axial position on the local εg, Vb and db profiles were discussed. The presence of solids at low solid concentrations not only increased the local εg and Vb, but also decreased the local db. The optimum solid loading for the maximum local εg and Vb together with the minimum local db was 0.16 × 10-3 m3, corresponding to a solid volume fraction, εS = 2.5%.  相似文献   

8.
An experimental study of the extent of axial backmixing in both gas and liquid phases was conducted in a 150 mm ID column packed with Mellapak 250Y corrugated structured packing. The column was operated at pressures ranging from 0.3 MPa to 2.0MPa with nitrogen and water flowing countercurrently through the packing. The amount of axial backmixing was experimentally evaluated by the pulse response techniques using hydrogen in gas phase and an aqueous solution of NaCl in liquid phase as inert tracers. The response of the tracer was monitored by means of thermal conductivity in the gas phase and electrical conductance in the liquid phase. The experimentally determined residence time distribution (RTD) curves were interpreted in terms of the diffusion-type modei. The results indicated that the axial backmixing in the gas increased notably with gas flowrate and slightly with operating pressure and liquid flowrate. The liquid-phase axial backmixing was an increasing function of both gas and liquid flowrates an  相似文献   

9.
一串上升气泡周围流体的湍动特性(英文)   总被引:1,自引:0,他引:1  
The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate the turbulent characteristic of fluid induced by a chain of bubbles rising in Newtonian and non-Newtonian fluids. The instantaneous flow field, turbulent kinetic energy (TKE) and TKE dissipation rate were measured. The results demonstrated that the TKE profiles were almost symmetrical along the column center and showed higher values in the central region of the column. The TKE was enhanced with the increase of gas flow and decrease of liquid viscosity. The maximum TKE dissipation rate appeared on both sides of the bubble chain, and increased with the increase of gas flow rate or liquid viscosity. These results provide an understanding for gas-liquid mass transfer in non-Newtonian fluids.  相似文献   

10.
液膜性质的小尺度研究   总被引:2,自引:0,他引:2       下载免费PDF全文
Structured packing is a good candidate for CO2 capture process because of its higher mass transfer efficiency and lower pressure drop.Now,the challenging problem of CO2 capture and storage demands more and more efficiency equipment.The aim of the present study is to investigate the liquid film characteristics under counter current gas phase and throw some insight into the enhancing mechanism of mass transfer performance in structured packing.A high speed digital camera,non-intrusive measurement technique,was used.Water and air were working fluids.Experiments were carried out for different gas/liquid flow rates and different inclination angles.The time-average and instantaneous film widths for each set of flow parameters were calculated.It is shown that the effects of gas phase could be neglected for lower flow rate,and then,become more pronounced at higher flow rate.According to instantaneous film width,three different stages can be distinguished.One is the constant width of liquid film.The second is the slight decrease of film width and the smooth surface.This kind of character will lead to less interfacial area and deteriorate the packing mass transfer performance.For the third stage,the variation of film width shows clearly chaotic behavior.The prediction model was also developed in present work.The predicted and experimental results are in good agreement.  相似文献   

11.
浆态床反应器内部往往安装有密集的竖直列管换热内构件,有关列管束对流场分布的影响还少有研究。本文在Φ500 mm×5000 mm的大型冷模实验装置中测定了安装不同密度列管束时的速度分布和气含率分布。实验表明,列管的存在一方面会显著提高浆料轴向速度,促进大尺度流体循环,另一方面也抑制了液体与气泡的径向湍动,使速度和气含率的径向分布更不均匀,造成液体与气体轴向返混加剧,增大了有列管束的浆态床反应器的放大风险。在低气速湍动鼓泡条件下,列管加入造成的“烟囱效应”将更为显著。  相似文献   

12.
湍动浆态床流体力学研究(Ⅲ)垂直列管内构件的影响   总被引:2,自引:2,他引:0  
张煜  卢佳  王丽军  李希 《化工学报》2009,60(5):1135-1140
浆态床反应器内部往往安装有密集的竖直列管换热内构件,有关列管束对流场分布的影响还少有研究。本文在Φ500 mm×5000 mm的大型冷模实验装置中测定了安装不同密度列管束时的速度分布和气含率分布。实验表明,列管的存在一方面会显著提高浆料轴向速度,促进大尺度流体循环,另一方面也抑制了液体与气泡的径向湍动,使速度和气含率的径向分布更不均匀,造成液体与气体轴向返混加剧,增大了有列管束的浆态床反应器的放大风险。在低气速湍动鼓泡条件下,列管加入造成的“烟囱效应”将更为显著。  相似文献   

13.
This paper presents an experimental analysis of the influence of the liquid rheology on the gas flow pattern in a bubble column reactor. Aqueous solutions of xanthan are selected as an example of non-Newtonian shear thinning fluid. Averaged gas holdup is determined by two experimental techniques: parietal pressure probes and electrical resistance tomography (ERT). ERT is also used to provide 2D images of the gas phase distribution in a column cross-section. Bubble size distributions are evaluated by a gas disengagement technique using the parietal pressure probes. All these techniques clearly show the gas flow pattern is different in Newtonian and non-Newtonian fluids. Gas holdup values decrease when increasing the liquid viscosity and reach a minimum or a plateau. Homogeneous flow regime, observed in water at low gas velocities, tends to disappear when viscosity increases. This evolution is visualized by a much less isotropic distribution of the gas phase within cross-section of the column and by the appearance of much larger bubbles due to an increased coalescence phenomenon.  相似文献   

14.
鼓泡床反应器内流动与传质行为的研究进展   总被引:2,自引:0,他引:2  
总结了有关浆态鼓泡床反应器内流动、混合用气液传质特性的研究成果,详细地介绍了鼓泡床反应器内气含率、液速、液体轴向扩散系数、传质系数的测量方法,阐述了鼓泡床反应器性能的主要影响因素,如系统压力、温度、气体表观气速、液体性质及固含率等对流动、液相混合和传质特性的影响,并对鼓泡床反应器的应用前景进行了详述.  相似文献   

15.
The jet bubble column consists of a conical entrance section which expands to a cylindrical column. Gas and liquid are co-currently introduced at the bottom of the column by a small diameter inlet pipe which acts like an ejector. The kinetic energy of the gas and liquid jet together with the conical geometry at the lower section of the column cause the formation and dispersion of small bubbles.

Gas-liquid mass transfer in the jet bubble column (61 cm diameter) was measured by a dynamic response technique, in which a step change was made in the gas phase oxygen concentration and the aqueous dissolved oxygen concentration response was measured at various axial and radial locations. It was found that a continuous stirred tank reactor model could be used to evaluate experimental results. The volumetric mass transfer coefficient in this type of system was found to increase with increasing gas flow rate and was about 1.5 times larger than the values obtained at similar conditions in conventional bubble columns. Preliminary measurements and calculations indicate negligible effects of liquid velocity and bed height on the mass transfer coefficient.  相似文献   

16.
Mean gas holdup, lateral distribution of gas holdup and axial mixing of gas and liquid were measured in bubble columns of 12 and 19cm i.d. The lateral distribution of gas holdup was strongly dependent on the flow regimes in the column. The axial mixing of liquid in the homogeneous bubble flow regime was much smaller than that in the heterogeneous bubble flow regime, and was not expressed by existing correlations. The axial mixing of liquid in the homogeneous bubble flow and the intermediate flow regime was simulated with a flow model based on the lateral distribution of buoyancy force and the effective viscosity. The axial mixing of gas was larger than that of liquid.  相似文献   

17.
The dimension of bubble column reactors is often based on empirical correlations. Very popular is the axial dispersion model. However, the applicability of these models is limited to the experimental conditions for which the dispersion coefficients are measured, because backmixing depends strongly on the columns dimension and the flow regime. This paper presents a numerical method for the calculation of the three-dimensional flow fields in bubble columns based on a multi-fluid model. Therefore, the local bubble size distribution is considered by a transport equation for the mean bubble volume, which is obtained from the population balance equation. For comparison with experimental results, the axial dispersion coefficients in the liquid and gas phase are calculated from the instationary, three-dimensional concentration fields of a tracer. The model is then extended to include mass transfer between the gas and liquid phase. Increasing mass transfer rates significantly influence the flow pattern. For several applications, a dispersed solid phase is added. For the calculation of three-phase gas-liquid-solid flow, the solid phase is considered numerically by an additional Eulerian phase.  相似文献   

18.
BACKGROUND: In order to improve the performance of a counter‐current bubble column, radial variations of the gas hold‐ups and mean hold‐ups were investigated in a 0.160 m i.d. bubble column using electrical resistance tomography with two axial locations (Plane 1 and Plane 2). In all experiments the liquid phase was tap water and the gas phase air. The superficial gas velocity was varied from 0.02 to 0.25 m s?1, and the liquid velocity varied from 0 to 0.01 m s?1. The effect of liquid velocity on the distribution of mean hold‐ups and radial gas hold‐ups is discussed. RESULTS: The gas hold‐up profile in a gas–liquid counter‐current bubble column was determined by electrical resistance tomography. The liquid velocity slightly influences the mean hold‐up and radial hold‐up distribution under the selected operating conditions and the liquid flow improves the transition gas velocity from a homogeneous regime to a heterogeneous regime. Meanwhile, the radial gas hold‐up profiles are steeper at the central region of the column with increasing gas velocity. Moreover, the gas hold‐up in the centre of the column becomes steeper with increasing liquid velocity. CONCLUSIONS: The value of mean gas hold‐ups slightly increases with increasing downward liquid velocity, and more than mean gas hold‐ups in batch and co‐current operation. According to the experimental results, an empirical correlation for the centreline gas hold‐up is obtained based on the effects of gas velocity, liquid velocity, and ratio of axial height to column diameter. The values calculated in this way are in close agreement with experimental data, and compare with literature data on gas hold‐ups at the centre of the column. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Liquid phase mixing is a phenomenon that results mainly due to convective and turbulent flow fields, which are generated by hydrodynamic interactions between the gas and liquid phases within a continuous co‐current upflow bubble column reactor. The extent of liquid phase mixing is usually quantified through the mixing time, or the axial dispersion coefficient. In the present work, the computational fluid dynamics (CFD) simulations for mixing and RTD in a continuous bubble column (with and without internals) are performed by using OpenFOAM 2.3.1. The superficial gas velocities were 0.014, 0.088, and 0.221 m/s and the superficial liquid velocities were 0.005 and 0.014 m/s. The simulations have been performed for three different configurations of the bubble column, that is, (a) an open bubble column, (b) a column with one vertical central rod of 36 mm diameter, (c) a column with the same central rod and four vertical additional rods of 12 mm diameter. The effects of superficial gas and liquid velocities and column internals were investigated on liquid phase mixing and the axial dispersion coefficient. Comparisons have been made between the experimental measurements and the CFD simulations.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号