共查询到20条相似文献,搜索用时 93 毫秒
1.
采用渐近波形估计技术(AWE)和预处理技术求解导体目标的宽带雷达散射截面(RCS)。应用矩量法求解导体目标的电场积分方程,通过构造预条件算子,使由矩量法得到的阻抗矩阵稀疏化,从而计算导体表面电流时变得简便,再结合渐近波形估计(AWE)技术计算导体目标的宽带雷达散射截面(RCS)。实例结果表明,该方法在计算电大导体目标时具有较高的计算效率和很好的精度。 相似文献
2.
应用渐近波形估计技术快速计算宽带雷达散射截面 总被引:3,自引:0,他引:3
将渐近波形估计技术应用到矩量法中 ,计算了任意形状二维理想导体目标的宽带雷达散射截面 .计算中使用矩量法和奇异值分解技术求解电场积分方程 ,得到一展开频率点的表面电流密度 ,通过Pad啨近似求出给定频带内任意频率点的表面电流密度分布 ,进而计算出散射场和雷达散射截面 .奇异值分解技术的使用消除了电场积分方程的内谐振问题 .对数值计算结果与矩量法逐点求解的结果进行了比较 ,两者吻合良好 ,且计算效率提高了约一个数量级 相似文献
3.
应用渐近波形估计技术快速计算宽带雷达散射截面 总被引:4,自引:0,他引:4
将渐近波形估计技术应用到矩量法中,计算了任意形状二维理想导体目标的宽带雷达散射截面.计算中使用矩量法和奇异值分解技术求解电场积分方程,得到一展开频率点的表面电流密度,通过Padé近似求出给定频带内任意频率点的表面电流密度分布,进而计算出散射场和雷达散射截面.奇异值分解技术的使用消除了电场积分方程的内谐振问题.对数值计算结果与矩量法逐点求解的结果进行了比较,两者吻合良好,且计算效率提高了约一个数量级. 相似文献
4.
5.
目标的雷达散射截面(RCS)与照射角度和照射频率都有关系,采用渐近波形估计(AWE)技术在角度域和频率域上预测任意形状的理想导体的单站RCS,通过Pade逼近求出给定角度域内任意角度及给定频带内任意频点的表面电流密度分布,进而计算出给定目标的散射场及雷达散射截面。对数值结果与矩量法逐点求解的结果进行了比较,两者吻合较好,而且提高了计算效率。 相似文献
6.
7.
渐近波形估计技术应用于导体柱RCS方向图的快速获取 总被引:7,自引:1,他引:7
本文基于渐近波形估计(AWE)技术和矩量法(MOM)快速预测任意形状导电柱体(PEC)的单站RCS方向图.首先采用矩量法求解导体柱的电场积分方程,得到导体柱在某一给定方向入射波照射下的表面电流的低阶矩量,然后利用AWE技术求出在任意方向入射波照射下用有理分式函数表示的表面电流,进而计算出RCS方向图.计算结果表明AWE完全能逼近MOM精确计算的曲线,同时在计算速度上可加快几十倍. 相似文献
8.
渐近波形估计技术用于介质柱宽角度RCS的计算 总被引:10,自引:7,他引:3
基于渐近波开估计(AWE)技术和矩量法(MOM)快速预测任意形状非均匀介质柱体的单站雷达散射截面RCS方向图,采用矩量法求解介质柱的电场积分方程,得到介质柱在某一给定方向入射波照射下的极化电流,然后利用AWE技术将任一角度入射波照射下的极化给定角度附近展开成Taylor级数,通过Pade逼近将Taylor级数转化为有理函数,由此可获得介质柱在任一角度入射波照射下的极化电流,进而计算出RCS方向图。计算结果表明AWE完全能逼近MOM精确计算的曲线,同时可加快计算速度。 相似文献
9.
雷达散射截面(RCS)既与频率有关又与角度有关.采用矩量法(MOM)结合降维展开格式(RDES)和渐近波形估计技术(AWE),可同时获得单站RCS的频域和角度域特性.首先,建立了关于目标表面电流的电场积分方程(EFIE),并采用MOM将EFIE离散为线性代数方程组;其次,基于RDES技术,可将目标表面电流展开为关于频率与角度及其各阶导数的叠加;再次,基于AWE技术,可快速获取目标表面电流的频域与角度域特性;最后,由目标表面电流计算远区散射场及RCS.本方法至少具有两个明显的优点,其一是能得到RCS的解析表达式,其二是明显降低计算机仿真时间. 相似文献
10.
二维电大导体目标宽带雷达散射截面的快速计算 总被引:5,自引:4,他引:5
在矩量法的基础上,应用空间分解技术将二维电大导体目标剖分成若干子区域,考虑子区域间的耦合,通过累进迭代法计算出目标表面电流,然后结合渐近波形估计技术计算了二维电大导体目标的宽带雷达散射截面.数值计算表明:计算结果与矩量法逐点计算结果相吻合,计算效率大大提高. 相似文献
11.
The Asymptotic Waveform Evaluation (AWE) technique is an extrapolation method that provides a reduced-order model of linear system and has already been successfully used to analyze wideband electromagnetic scattering problems. As the number of unknowns increases, the size of Method Of Moments (MOM) impedance matrix grows very rapidly, so it is a prohibitive task for the computation of wideband Radar Cross Section (RCS) from electrically large object or multi-objects using the traditional AWE technique that needs to solve directly matrix inversion. In this paper, an AWE technique based on the Characteristic Basis Function (CBF) method, which can reduce the matrix size to a manageable size for direct matrix inversion, is proposed to analyze electromagnetic scattering from multi-objects over a given frequency band. Numerical examples are presented to illustrate the computational accuracy and efficiency of the proposed method. 相似文献
12.
13.
14.
15.
The Volume-Surface Current Continuity Method (VSCCM) is presented to analyze electromagnetic radiation from microstrip antenna. The microstrip antenna is discretized into small triangular patches on conducting surface and tetrahedral volume cells in dielectric region. The Method of Moments (MoM) is applied to solve the integral equation. An equation contains the restriction relation between the volume and surface current coefficient is derived from the current continuity equation at those parts where the conducting surface is in contact with the dielectric material. A simple equivalent strip model is introduced in the treatment of the feeding probe in VSCCM. The VSCCM can reduce the unknowns required to be solved in MoM, as well as the condition number of the matrix equation. Numerical results are given to validate the accuracy and efficiency of this method. 相似文献
16.
针对任意形状金属-介质混合目标的电磁散射问题,使用矩量法将体-面结合的积分方程(VSIE)转换成线性方程组,并利用预修正快速傅立叶变换(P-FFT)方法来进行快速求解.为减少直接计算和预修正的近区未知量个数,采用一种改进的模板拓扑.数值计算结果表明,基于VSIE的P-FFT方法可以高效准确地求解金属-介质混合目标的电磁散射问题,改进的模板拓扑可以显著减少近区未知量个数,从而减少算法的存储需求和计算时间. 相似文献
17.
18.
19.
分块阻抗矩阵迭代算法(Block-Iterative Algorithm)是一种非常直接而有效的求解多导体散射的加速求解算法.然而当单导体尺寸较大时,求解多导体散射的宽频带特性时仍然存在较费计算资源问题.基此,提出采用一种有效的Pade逼近型[Z]阻抗矩阵内插技术与分块阻抗矩阵迭代算法相结合的方法来快速分析多导体的宽频带电特性;计算结果与已有结果吻合较好,并且大大节省了计算资源,从而说明了该方法的快速性和精确性. 相似文献