共查询到19条相似文献,搜索用时 101 毫秒
1.
2.
3.
文章综合考虑了运动控制实现的复杂性和精确性,采用一种基于机器人动态性能变化而实时调整模糊控制规则的复合自适应模糊控制方法,从而提高了机器人的自适应能力。实验结果显示,系统响应速度快,可以满足实时性和控制精度的要求。 相似文献
4.
5.
基于两轮差动驱动的移动机器人,设计了一种路径跟踪控制系统。系统采用临时路径生成方法,通过规划移动机器人跟踪上期望路径前的轨迹,消除初始位置误差和方向误差,解决了移动机器人直接跟踪期望路径时控制量可能过载的问题,使机器人光滑趋近到期望路径。控制器的设计采用模糊控制器。试验验证了系统的有效性。 相似文献
6.
7.
轮式移动机器人的模糊轨迹跟踪控制 总被引:3,自引:0,他引:3
文章针对实际的轮式移动机器人轨迹跟踪控制问题提出了一种解决方法。利用模糊控制器实现对移动机器人的轨迹控制,并进行了计算机仿真和实际的轮式移动机器人的轨迹控制实验,将控制效果与传统的PID控制器的控制结果进行比较,结果表明了模糊控制在机器人轨迹跟踪问题上具有很好的性能。 相似文献
8.
9.
针对移动机器人在复杂环境下的路径规划与轨迹跟踪控制,提出了一种最优轨迹跟踪控制方法。首先,通过理论分析给出了移动机器人的运动学模型和对避障问题的描述,推导出了位置与姿态方程以及目标函数表达式;其次,介绍了萤火虫算法的寻优机制,并采用广义方向学习策略来改进原算法的性能;同时,引入NUBRS曲线来光滑处理局部路径,缩短总路径长度;进而,将移动机器人系统分成位置与姿态两个控制环,分别设计PD控制律来实现其稳定的轨迹跟踪控制;最后,通过仿真与实验验证了所提方法的有效性,结果表明:(1)改进后的萤火虫算法能够为移动机器人规划出一条避障且可行走的轨迹;(2)基于PD控制策略,移动机器人能够有效地实现轨迹跟踪。 相似文献
10.
11.
12.
融合多模糊控制器的全方位移动AGV路径跟踪控制技术 总被引:2,自引:0,他引:2
针对全方位移动AGV的路径跟踪控制,提出了一种融合多模糊控制器的路径跟踪模糊控制技术,通过对路径跟踪不同方法的研究和实验总结制定了一套用于模糊路径跟踪的控制规则,该控制规则对距离偏差、角度偏差以及它们的变化率的数据进行模糊化处理、推理和输出去模糊化的控制量,避免了大量精确处理偏差值带来的AGV系统调节不稳定的问题.通过仿真和实验结果表明,该控制技术可以使全方位移动AGV更稳定、快速地进行路径跟踪,提高了运行效率. 相似文献
13.
为实现挖掘机器人的自动挖掘,在挖掘机器人的轨迹规划器给出铲斗期望运动轨迹的情况下,需要挖掘机器人的控制系统能够控制其工作装置实现对给定轨迹的准确跟踪.利用拉格朗日方法建立了挖掘机器人工作装置的三自由度动力学方程,设计了自适应模糊滑模变结构控制器.利用模糊控制动态调节切换增益,将滑模控制的切换项转化为连续的模糊系统,增强了控制系统对挖掘机器人工作装置不确定性和外界干扰的鲁棒性,削弱了滑模控制的抖振现象,并且有较强的自适应跟踪能力.利用MATLAB7.4/Simulink工具箱对所设计的控制器进行了仿真,给出了自适应模糊滑模控制的跟踪性能及误差. 相似文献
14.
Yu Gao Chang Goo Lee Kil To Chong 《Journal of Mechanical Science and Technology》2008,22(12):2403-2416
In this paper, a receding horizon (RH) controller is developed for tracking control of wheeled mobile robots (WMRs) subject to nonholonomic constraint in the environments without obstacles. The problem is simplified by neglecting the vehicle dynamics and considering only the steering system. First, the tracking-error kinematic model is linearized at the equilibrium point. And then, it is transferred to an exact discrete form considering the time-delay. The control policy is derived from the optimization of a quadratic cost function, which penalizes the tracking error and control variables in each sampling time. The minimizing problem is solved by using the QP (quadratic programming) method taking the current error state as the initial value and including the velocity constraints. The performance of the control algorithm is verified via the computer simulations with several different predefined trajectories showing that the strategy is feasible. This paper was recommended for publication in revised form by Associate Editor Doo Yong Lee Kil To Chong (M’96) received the Ph.D. degree in mechanical engineering from Texas A&M University, College Station, in 1995. Currently, he is a Professor at the School of Electronics and Information Engineering, Chonbuk National University, Jeonju, Korea, and Head of the Mechatronics Research Center granted from the Korea Science Foundation. His research interests are in the areas of motor fault detection, network system control, time-delay systems, and neural networks. Chang Goo Lee was born in Chonju, South Korea on Dec., 1958. He received the B.S. and M.S., and Dr.Eng. degrees in Electrical Engineering from Chonbuk National University, South Korea, 1981, 1983 and 1990 respectively. He had been with ETRI as a senior researcher from 1983 to 1991. Since 1992, He has been with the School of Electronic and Information Engineering, Chonbuk National University where he is presently a Professor. His research interests include intelligent control, nonlinear control, and home network control. Yu Gao received the master’s degree in Electronics and Information from Chonbuk National University, Korea, in 2008. He got his bachelor’s degree in Physics from Soochow University, China, in 2005. Currently, he is a Ph.D. candidate in the School of Electronics and Information, Chonbuk National University, Korea. His research interests are in the area of the receding horizon control. 相似文献
15.
万方数据知识服务平台-中外学术论文、中外标准、中外专利、科技成果、政策法规等科技文献的在线服务平台。 相似文献
16.
基于改进Voronoi图的移动机器人在线路径规划 总被引:1,自引:0,他引:1
针对移动机器人在部分环境信息已知下的路径规划问题,运用Voronoi图理论及动态路径最优算法(D*算法)理论,研究了一种基于传感器信息的移动机器人在线路径规划的方法.该方法利用现有的已知环境信息离线生成路图,并根据起点与终点的位置规划出一条无碰撞的全局最优路径,然后移动机器人沿着最优路径前进,安装在机器人上的传感器不断地探测环境新信息以在线完成路图的重构及路径的重规划,实时搜索一条全局最优路径.最后,通过在自制的小车平台上的实验证明方法的可行性. 相似文献
17.
介绍非完整移动机器人追踪运动物体的状态反馈控制算法.并引入一些非时变函数以计算状态反馈变量,从而获得连续的速度分布.对控制算法的模拟由MATLAB实现.结果表明,通过状态反馈控制算法,轮式机器人可以循合理的轨迹对运动物体进行追踪以及运动避障. 相似文献
18.
This paper presents an optimal control strategy for optimal trajectory planning of mobile robots by considering nonlinear dynamic model and nonholonomic constraints of the system. The nonholonomic constraints of the system are introduced by a nonintegrable set of differential equations which represent kinematic restriction on the motion. The Lagrange’s principle is employed to derive the nonlinear equations of the system. Then, the optimal path planning of the mobile robot is formulated as an optimal control problem. To set up the problem, the nonlinear equations of the system are assumed as constraints, and a minimum energy objective function is defined. To solve the problem, an indirect solution of the optimal control method is employed, and conditions of the optimality derived as a set of coupled nonlinear differential equations. The optimality equations are solved numerically, and various simulations are performed for a nonholonomic mobile robot to illustrate effectiveness of the proposed method. 相似文献
19.
为解决未知环境中移动机器人的自适应路径规划问题,提出了一种基于Q学习算法的自主学习方法。首先设计了未知环境中基于传感器信息的移动机器人自主路径规划的学习框架,并建立了学习算法中各要素的数学模型;然后利用模糊逻辑方法解决了连续状态空间的泛化问题,有效地降低了Q值表的维数,加快了算法的学习速度;最后在不同障碍环境中对基于Q学习算法的自主学习方法进行了仿真实验,仿真实验中移动机器人通过自主学习较好地完成了自适应路径规划。研究结果证明了该自主学习方法的有效性。 相似文献